Contextual Cues for Deep Learning
Models of Code

Disha Shrivastava

°Q .
Université f”‘\ [KV M | |a

, YAV,
de Montréal MY,

. On-the-Fly Adaptation of Source Code Models RepoFusion: Training Code Models to
O u tl ine (CAP Workshop, NeurIPS 2020) Understand Your Repository

On-the-Fly Adaptation of Source Code Models

(under review at NeurlPS 2023)

Introduction> Article 1 > Article 2 > Article 3 > Article 4

> Final Thoughts

Learning to Combine Per-Example Repository Level Prompt Generation for
Solutions for Neural Program Synthesis Large Language Models of Code
(NeurlPS 2021) (ICML 2023)

On-the-Fly Adaptation of Source Code Models RepoFusion: Training Code Models to

O u tl i ne (CAP Workshop, NeurIPS 2020) Understand Your Repository
(under review at NeurlPS 2023)

On-the-Fly Adaptation of Source Code Models

RepoFusion: Training Code Models to Understand
Yo

Introduction Q> Article 1 > Article 2 > Article 3 > Article 4 > Final Thoughts

Learning to Combine Per-Example Repository Level Prompt Generation for
Solutions for Neural Program Synthesis Large Language Models of Code
(NeurlPS 2021) (ICML 2023)

Deep Learning for Code

e Source Code: Exciting application domain for deep learning methods.

Given a string representing musical
notes in a special ASCII format,

parse this string and compute a total
Length of the music in beats.

Legend:

‘0’ - whole note, Llast four beats
‘o[’ - half note, last two beats

‘.|’ - quarter note, Last one beat

notes = ‘oo| .| o] o] .| .| .| .| 00’

Code Generation

1. Split the string into a Llist of
notes.

2. Iterate over the Llist and compute the
total Length of the music.

3. Print the result.

1.
notes = notes.split()

2.
total_length = @
For note in notes:
if note == ‘0’:
total_length += 4
if note == ‘o|’:
total_length += 2
if note == “.|’:
total_length += 1

3.
print(total_length)

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

Deep Learning for Code

e Source Code: Exciting application domain for deep learning methods.

Given a string representing musical # 1. Split the string into a Llist of
notes in a special ASCII format, notes. 1 #include <stdio.h> 1 #include <stdio.h>
parse this string and compute a total # 2. Iterate over the List and compute the 2 fint main() 2 AT Lo -
. . . 3 int a[i]; 3 int a[100], i, n, count = ©;
Length of the music in beats. total Length of the music. 4 int i;
Legend: # 3. Print the result pfl__iscant x>, &n); 4| scanf(vxd", &n);
S = s 6 scanf("%d", &a[i]); 5 for (i = @; i < n; i++)
‘0’ - whole note, Llast four beats 7 int count = 0; 6 scanf("%d", &a[i]);
€al2. = 8 for (i = 0; i <n; i++) { 7 for (i =0; i <n; i++) {
of half note, last two beats # 1. . 2 R ! O RN —
‘.|’ - quarter note, Last one beat notes = notes.split() 10 if (a[i] == a[j]) 9 if (a[i] == a[j])
11 count = count + 1; 10 count = count + 1;
12 3} 11 3}
notes = ‘oo| .| o] o] .| .| .| .| 00’ # 2. 13| 3 12| 3}
- 14 if (count == a[i]) 13 if (count == n)
t°tal_len$th =0 15 printf("Yes"); 14 printf("Yes");
For note in notes: 16 else 15 else
2 == €nde 17 printf("No"); 16 printf("No");
. if note == ‘0’: 18 return 0; 17 return 0;
Code Generation total_length += 4 2l i)
if note == ‘o|’:

3 notems ot Code Repair

total_length += 1

3.
print(total_length)

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

Deep Learning for Code

e Source Code: Exciting application domain for deep learning methods.

Given a string representing musical
notes in a special ASCII format,

parse this string and compute a total
Length of the music in beats.

Legend:

‘0’ - whole note, Llast four beats
‘o[’ - half note, last two beats

‘.|’ - quarter note, Last one beat

notes = ‘oo| .| o] o] .| .| .| .| 00’

Code Generation

1. Split the string into a Llist of
notes.

2. Iterate over the Llist and compute the
total Length of the music.

3. Print the result.

1.
notes = notes.split()

2.
total_length = @
For note in notes:

if note == ‘0’:
total_length += 4
if note == ‘o|’:
total_length += 2
if note == “.|’:

total_length += 1

3.
print(total_length)

1 #include <stdio.h>
2 int main() {

©~No O w

10
11
13
13
14
15
16
by §
18
19 }

int
int
scan
scan
int
for

3
if (

else

retu

1 #include <stdio.h>
2 int main() {

for (int j = 0; j < n; j++) {
if (a[i] == a[j])
count = count + 1;

a[il; 3 int a[100], i, n, count = 0;
i;
f("%d", &n); 4 scanf("%d", &n);
f("%d", &a[i]); 5; for (i = @; i < n; i++)
count = 0; 6 scanf("%d", &a[i]);
(i=0; i<n; it+) { 7 for (i =0; i <n; i++) {
for (j = 6; j <n; j+) { 8
if (a[i] == a[j]) 9
count = count + 1; 10
& 11 3}
12 3
count == a[i]) 13 if (count == n)
printf("ves"); 14 printf("ves");
15 else
printf("No"); 16 printf("No");
rn o; 5 g return 0;
18 }

Code Repair

// Translate from C to Python
int add_one (int x){
intm=1;
while (x & m) {
X =X " m;
m <<= 1;
}
X =Xx"m;
return x; }

Code Translation

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

def add_one(x: int):

m=1

while (x & m):
X = {x * m)
m<<=1

X=(x*m)

return x

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

Deep Learning for Code

Given a string representing musical
notes in a special ASCII format,

parse this string and compute a total
Length of the music in beats.

Legend:

‘0’ - whole note, Llast four beats
‘o[’ - half note, last two beats

‘.|’ - quarter note, Last one beat

notes = ‘oo| .| o] o] .| .

.| o0’

Code Generation

Slow Version(Runtime=4.18s)

t = int(input())

for i in range(1, t+1):
n, b = [int(s) for s in input().split(" ")]
houses = [int(s) for s in input().split(" ")]
houses . sort()

result = 0 Algorithmic Difference: Using a heap
for h in houses: <« instead of pre-sorting the list once allows
if b >= h: early termination of the main loop.
result += 1
b-=h

print("Case #{}: {}".format(i, result))

1. Split the string into a Llist of
notes.

2. Iterate over the Llist and compute the
total Length of the music.

3. Print the result.

1.
notes = notes.split()
2.

total_length = @

For note in notes:

if note == ‘0’:
total_length += 4
if note == ‘o|’:
total_length += 2
if note == °.|’:

Fast Version(Runtime=2.52s: ~1.66x Speedup)

inport heapq

input() reads a string with a line of input, stripping the '\n'(newline) at the end.
This is all you need for most Kickstart problens.
#all_data = []
t = int(input()) # read a line with a single integer
for i in range(1, t + 1):
n, b = [int(s) for s in input().split(" ")] # read a list of integers, 2 in this case
prices = [int(s) for s in input().split(" ")]
#all_data.append([n,b,prices])
\ heapq. heapify(prices)
houses = 0
while prices and b > 0:
new_house = heapq.heappop(prices)
b -= new_house
if b >= 6:
houses += 1
print("Case #{}: {}".format(i, houses))

Code Analysis

“Learning to Improve Code Efficiency”. Chen, Binghon

et al. (2022

1 #include <stdio.h>
2 int main() {

©~No O w

10
11
13
13
14
15
16
by §
18
19 }

int
int

scanf("%d", &n);

scan
int
for

3
if (

else

retu

Source Code: Exciting application domain for deep learning methods.

1 #include <stdio.h>
2 int main() {

a[il; 3
i

int a[100], i, n, count = ©;

for (int j = 0; j < n; j++) {
if (a[i] == a[j])
count = count + 1;

4 scanf("%d", &n);
f("%d", &a[i]); 5 for (i =0; i< n; i++)
count = 0; 6 scanf("%d", &a[i]);
(i=0; i<n; it+) { 7 for (i = 0; i <n; i++) {
for (3 =0; 3 <n; j+) { 8
if (a[i] == a[j]) o
count = count + 1; 10
} 11 }
12 3}
count == a[i]) 13 if (count == n)
printf("ves"); 14 printf("ves");
15 else
printf("No"); 16 printf("No");
mo; 17 return 0;
18 }

Code Repair

// Translate from C to Python
int add_one (int x){
intm=1;
while (x & m) {
X =X " m;
m <<= 1;
}
X =Xx"m;
return x; }

Code Translation

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

def add_one(x: int):

m=1

while (x & m):
X = {x * m)
m<<=1

X=(x*m)

return x

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
https://arxiv.org/abs/2208.05297

Deep Learning for Code

e Source Code: Exciting application domain for deep learning methods.

Given a string representing musical # 1. Split the string into a Llist of
notes in a special ASCII format, notes. 1 #include <stdio.h> 1 #include <stdio.h>
parse this string and compute a total # 2. Iterate over the List and compute the 2 int main() { gprtneinh) t
N . . 3 int a[i]; 3 int a[100], i, n, count = ©;
Length of the music in beats. total Length of the music. 4 int i;
Legend: # 3. Print the result. By scantCdLy an); 4 sanf('d", &n);
6 scanf("%d", &a[i]); 5 for (i = 0; i < n; i++)
‘0’ - whole note, Llast four beat tensorflow = 6 scanf("%d", &a[i]);
‘o’ - half note, last two beats 7 WL gr:(?;;;:”é,l}*i : —
‘.|’ - quarter note, Last one be 3] o 9 if (ali] = al3])
i H 10 count = count + 1;
s o C Explanation 5 '
notes = ‘oo| .| o] o] .| .| .| .| o0 inner(T): Ode p a ato 12| 3}
-tf.reduce_mean((T("input") -) Ex2h) 13 if (count b ﬂ)"
: 14 printf("ves");
s 15 else

16 printf("No");

Code Generation [Show Explanation -

- The code is a function that takes in an input tensor and returns the squared difference between it and 0.5.

ode Repair

- The code is written to take in a batch size, which defaults to None.

Slow Version(Runtime=4.18s)

t = int(input()) .
for 1 in range(1, t+1): - The code is used to calculate the L2 norm of a batch of data. s RN
on, bl: [fnz{s) for s in input().split(" ")] .) Python def add_one(x + 1nt) b4
houses = [int(s) for s in input().split(" ")] - This code calculates the L2 norm for each sample in a batch, and then returns the average value across all m=1
houses..sort() .
samples. : :
result = 0 Algorithmic Difference: U| P while (X & m) .
for h in houses: <«— instead of pre-sorting the I ca N, D = [1NT(s) TOF 5 TN 1APUT().SPLL While X - A
if b >= q= . early termination of the main loop. ‘ prices = [int(s) for s in input().split(" ")] o <): m N (X m)
result += a 3.2 () = e =
b-=h heapq: heapify(prices) X =X m; m<<=1
rint("Case #{}: {}".format(i, result)) he =0 = H = A
’ w::::sprices and b > 0: m <<= 1; * (x m)
new_house = heapq.heappop(prices) } return X
b -= new_house
if b >= 0: X =X"m
houses += 1
print("Case #{}: {}".format(i, houses)) return x; }
“Learning to Improve Code Efficiency”. Chen, Binghong, et al. (2022) https://denigma.app/

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
https://arxiv.org/abs/2208.05297
https://denigma.app/

Deep Learning for Code

e Source Code: Exciting application domain for deep learning methods.

e Motivation

ﬁelping Non-Programmeh

Enable non-expert users to
solve problems in an
automated fashion.

e Programming requires
technical skills.

e Generate programs from
user’s intent expressed in
forms that are natural to

\\ them such as NL.

Deep Learning for Code

e Source Code: Exciting application domain for deep learning methods.

e Motivation

malping Non-Programmelh /Helping Programmers\

Enable non-expert users to Boost productivity of software
solve problems in an developers.
automated fashion.

e Divert attention from

e Programming requires mundane tasks.
technical skills. e Focus on tasks that

e Generate programs from require creative thinking.
user’s intent expressed in e Code completion to avoid

forms that are natural to typing boilerplate code.

\\ them such as NL. / \\

Deep Learning for Code

e Source Code: Exciting application domain for deep learning methods.

/ Helping Programmers\ /Advancing ML Research

Boost productivity of software Several challenges with
developers. modeling source code.

e Motivation

malping Non-Programmelh

Enable non-expert users to
solve problems in an
automated fashion.

e Divert attention from Rigid Syntax

Programming requires
technical skills.

Generate programs from
user’s intent expressed in
forms that are natural to

k them such as NL.

&

mundane tasks.

Focus on tasks that
require creative thinking.
Code completion to avoid

typing boilerplate code.

A

Structure

Discrete nature
Multiple symbolic
representation forms
e Continuously evolving

Deep Learning for Code

e Source Code: Exciting application domain for deep learning methods.

e Motivation

e LLMs of code have potential for huge impact.

1. Check that the file "data.csv" actually exists. You can do this by using the

import datetime
‘os.path.isfile()" function.

ef parse_expenses (expenses_string) :
Parse the list of expenses and return the list of triples (date, value, currency).

. Check that the file *data. csv " is in the same directory as your Python script. You can do this by using
the "0s..getewd()" function to get the current working directory, and then comparing it to the
directory where the file *data. csv " is located.

~

Ignore lines starting with #.
Parse the date using datetime.
Example N
2016 ~34.01 USD . Check that the file ‘data. csv " has the correct name. You can do this by using the
2016-01-03 *0s.path. basename () * function to get the base name of the file, and then comparing it to the name
2016- -03

w

Yyou are expecting.

expenses = [] If you have checked all of these things and the error is still occurring, you may need to contact the person who
created the file *data. csv " for help.

line in expenses_string.

date, value, currency = line.split(" ") O P Coret :
expenses. append((datetine. datetine. strptine(date, "%Y-%n-%d"
float(value),
currency))
return expenses Enterap

& Copilot

Already part of consumer-facing products

Central Theme

Effectively Harness Contextual Cues

\

Identify and select

relevant contextual

~

cues from a given task.

)

—

Leverage these contextual
cues effectively in deep

learning models of code.

\)

Central Theme

Effectively Harness Contextual Cues

Identify and select Leverage these contextual

relevant contextual :> cues effectively in deep

cues from a given task. learning models of code.

- / -)

Improves e Adding information that the model wouldn’t normally have access to.
Generalization Directing model’s attention to specific information.

More
Context-Aware e Adapt to unseen tasks
Predictions e Improve performance on existing tasks.

Our General Framework

_ X = Input Context (code in the current file before the cursor)
Given 'y = Actual Target (tokens following the cursor till the end of the line)
W = Context Meta-information (content in other files in the repository)

Goal: Effectively harness contextual cues based on X and W such that the predicted
target Y is close to the actual target Y.

Our General Framework

_ X = Input Context (code in the current file before the cursor)
Given 'y = Actual Target (tokens following the cursor till the end of the line)
W = Context Meta-information (content in other files in the repository)

Goal: Effectively harness contextual cues based on X and W such that the predicted
target Y is close to the actual target Y.

Context Enhancement

Z = Enhance (X, W)
/

7

Support Context
(method names and bodies
from the imported file)

Our General Framework

_ X = Input Context (code in the current file before the cursor)
Given 'y = Actual Target (tokens following the cursor till the end of the line)
W = Context Meta-information (content in other files in the repository)

Goal: Effectively harness contextual cues based on X and W such that the predicted
target Y is close to the actual target Y.

Context Enhancement Prediction using the Enhanced Context
Z = Enhance (X, W) > [?=Predict(X,Z)}
// ~.
y o
Support Context Predicted Target
(method names and bodies (tokens generated

from the imported file) by the model)

Our General Framework

_ X = Input Context (code in the current file before the cursor)
Given 'y = Actual Target (tokens following the cursor till the end of the line)
W = Context Meta-information (content in other files in the repository)

Goal: Effectively harness contextual cues based on X and W such that the predicted
target Y is close to the actual target Y.

Context Enhancement Prediction using the Enhanced Context
Z = Enhance (X, W) > [?=Predict(X,Z)}
// ~.
y o
Support Context Without Context < Predicted Target
(method names and bodies Elnh aun ceme n?: Y=Q(X) (tokens generated
from the imported file) by the model)

Thesis Overview

-

All articles in this thesis are based on our general
Enhance-Predict framework.

e \We propose novel approaches for Enhance and Predict stages.

e \We focus on two main tasks.

N\ J

Article 1) Article 2 Article 3 Article 4

Program Synthesis Code Completion in an IDE
by Examples

On-the-Fly Adaptation of Source Code Models RepoFusion: Training Code Models to

O u tl i ne (CAP Workshop, NeurIPS 2020) Understand Your Repository
(under review at NeurlPS 2023)

On-the-Fly Adaptation of Source Code Models

RepoFusion: Training Code Models to Understand
Yo

Introduction

N
Article1 Article 2 > Article 3 > Article 4 > Final Thoughts

Learning to Combine Per-Example Repository Level Prompt Generation for
Solutions for Neural Program Synthesis Large Language Models of Code
(NeurlPS 2021) (ICML 2023)

Learning to Combine Per-Example Solutions

for Neural Program Synthesis
NeurlPS 2021

Université f'”\

de Montréal

Google Research

Code, data and trained checkpoints: https://github.com/shrivastavadisha/N-PEPS

https://github.com/shrivastavadisha/N-PEPS

Task: Program Synthesis by Examples

IO Example: 1

Input: [7, 6] , Output: 3

IO Example: N

Input: [8, 12, 11], Output: 6

>

Program
Synthesis
Block

Program

[o R o TR o T

[INT]

FILTER (%$2==0) a
MAP (/2) b

SORT c

LAST d

e Given a set of N IO examples, find a program that satisfies those examples.

Task: Program Synthesis by Examples

DSL = governs the syntax and semantics of the program

SORT ::
MAP ::

[INT] -> [INT],
(INT -> INT) -> [INT]-> [INT], ...

IO Example: 1

Input: [7, 6] , Output: 3

IO Example: N

Input: [8, 12, 11], Output: 6

>

v

Program
Synthesis
Block

Program

[o R o TR o T

[INT]

FILTER (%$2==0) a
MAP (/2) b

SORT c

LAST d

e Given a set of N IO examples, find a program that satisfies those examples.

e Given a timeout value to be practically meaningful.

Neural Per-Example Program Synthesis (N-PEPS)

#1. [154, -252, -228, -85, -136], [109, 65, -3, 71, 189] -> []
#2: [-113, 240, -59, 66], [-197, 150] -> [-240, -66]
#3: [7, 106, -138], [225, 97, 17] ->[]

[-140, -51, 155, 74, -21], [35, 82, -103]-> [-155, -74]
#5: [87, -115, 52], [177, 193, -17] -> [-52]

1 |

AW N R

AN AN AN N AN A

Py
a <- LIST
b <- LIST

c <- COUNT (>0) b
d <- DROP c a

e <- MAP (*-1) d
f <- FILTER (<0) e

Global Program Synthesis (GPS)

e Find global solution p, that satisfies
all I0 examples simultaneously

e Canbe hard

Neural Per-Example Program Synthesis (N-PEPS)

by
a <- LIST
#1. [154, -252, -228, -85, -136], [109, 65, -3, 71, 189] -> [] b <. LisT
#2: [-113, 240, -59, 66], [-197, 150] -> [-240, -66]
#3: [-7, 106, -138], [225, 97, 17] > [] 1: ¢ <- COUNT (>0) b

#4: [-140, -51, 155, 74, -21],
#5: [87, -115, 52], [177, 19

Global Program Synthesis (GPS)

e Find global solution p_g that
satisfies all 10 examples
simultaneousl

Neural Per-Example Program Synthesis (N-PEPS)

Py
a <- LIST
#1. [154, -252, -228, -85, -136], [109, 65, -3, 71, 189] -> [] S -
#2: [-113, 240, -59, 66], [-197, 150] -> [-240, -66]
#3: [-7, 106, -138], [225, 97, 17] -> [] 1: c <- COUNT (>0) b
[-140, -51, 155, 74, -21], [35, 82, -103]-> [-155, -74] 2: d <- DROP c a
#5: [87, -115, 52], [177, 193, -17] -> [-52]
3: e <- MAP (*-1) d
— 4: f <- FILTER (<0) e
H | Per Example Program Synthesis (PEPS).
V. Break into two stages:
PE Searches Agg::;as\tor e Enhance: Find programs that satisfy a
> Koys and Values computaton single example (PE solutions) - fast
1. Find PE solutions: S | Happens only once, Query
Happens only once 'Ujh computation: Repeated at each step [] Predict: Comb|ne 'the PE Solu‘nons
""""""""""""""""""""""""""""""""""""""" p such that it leads to the global
3 i .
il b2 : solution
a <- LIST a <- LIST a <- LIST
b <- LIST) <= [LIST b <- LIST
; 1: ¢ <- COUNT (ODD) b 1: ¢ <- FILTER (>0) a 1: c <- COUNT (>0) b
2: d <- DROP ¢ a 2: d <- MAP (*-1) ¢ 2: d <- DROP c a
3: e <- MAP (*-1) d
¢ Works for #1, Works for #2, #4 1
: Works for #5

Neural Per-Example Program Synthesis (N-PEPS)

Py
a <- LIST
#1. [154, -252, -228, -85, -136], [109, 65, -3, 71, 189] -> [] o s
#2: [-113, 240, -59, 66], [-197, 150] -> [-240, -66]
#3: [-7, 106, -138], [225, 97, 17] -> [] 1: c <- COUNT (>0) b
[-140, -51, 155, 74, -21], [35, 82, -103]-> [-155, -74] 2: d <- DROP ¢ &
#5: [87, -115, 52], [177, 193, -17] -> [-52]
3: e <- MAP (*-1) d
_— 4: f <- FILTER (<0) e
@ Per Example Program Synthesis (PEPS):
V4 Break into two stages:
Cross

PE Searches e Enhance: Find programs that satisfy

S98ETaey | [2 keys and values computation a single example (PE solutions) - fast
1. Find PE solutions: o | Happens only once, Query
Happens only once ’K:J:”A computation: Repeated at each step ° Predict: Combine the PE solutions
such that it leads to the global
i i = solution
a <- LIST a <- LIST a <- LIST '
et iTST i, ILTST A e We propose an architecture called
1: ¢ <- COUNT (ODD) b 1: ¢ <- FILTER (>0) a 1: c <- COUNT (>0) b Cross Aggregator (CA) that learns to
2: d <- DROP c a 2: d <- MAP (*-1) c 2: d <- DROP c a combine the PE solutions.

: - AN 8d :
Works for #1, Works for #2, #4 St | We use neural networks for both these

Works for i3, &5 stages (PE Searches and CA): N-PEPS

Cross Aggregator (CA)

Idea: If a PE program state* has high relevance with the global program state at a given step,
then the following PE program line is likely to be useful for synthesizing the next line of Py.

Py
a <- LIST * _
T b < LIST Program state at step t = Vector
#3: [-7, 106, -138], [225, 97, 17] -> [] 1: ¢ <- COUNT (>0) b
(4514053, 150, 14, 21 [35,82.-1031> 455, 74 zis G | representing the values of variables

@ FL gl it e obtained by executing t lines of the
N

rogram.
PE Searches gross J prog

Aggregator
2. Keys and Values computation:
1. Find PE solutions: [Happ only once, Query
Happens only once ‘ﬁ computation: Repeated at each step
p1 D2 b3
AN a <- LIST a <- LIST
b <- LIST b <- LIST b <- LIST
1: ¢ <- COUNT (ODD) b 1: ¢ <- FILTER (>0) a 1: ¢ <- COUNT (>0) b
I2: d <- DROP c a I 2:d<- MAP (*-1) c 2: d <- DROP c a I
3: e <- MAP (*-1) d
Works for #1, Works for #2, #4

‘Works for #5 *Automatic program synthesis of long programs with a learned garbage collector”. Zohar &
] Wolf, NeurlPS 2018

https://arxiv.org/abs/1809.04682
https://arxiv.org/abs/1809.04682

Cross Aggregator (CA)

Idea: If a PE program state* has high relevance with the global program state at a given step,
then the following PE program line is likely to be useful for synthesizing the next line of Py.

Py
a <- LIST
#1. [154, -252, -228, -85, -136], [109, 65, -3, 71, 189] ->[] b <- LIST
#2: [-113, 240, -59, 66], [-197, 150] -> [-240, -66]
#3: [-7, 106, -138], [225, 97, 17] > [] 1: ¢ <- COUNT (>8) b .)]
[-140, -51, 155, 74, -21], [35, 82, -103]-> [-155, -74] i d < bRoP ¢ a | Model: Multi-head cross-attention
#5: [87, -115, 52], [177, 193, -17] -> [-52] . = i
T e <- - .
F : f <- FILTER (<0) e meChanlsm
@ \L Query = Global program state at step t
Cross
PE Searches —
Aggregator Key = PE program state at step t
2. Keys and Values computation:
1. Find PE solutions: I Happ only once, Query
Happens only once ‘ﬁ computation: Repeated at each step .
Value = PE program line t+1
: P1 D2 b3 :
a <- LIST a <- LIST a <- LIST
b <- LIST b <- LIST b <- LIST
1: ¢ <- COUNT (ODD) b 1: ¢ <- FILTER (>0) a 1: ¢ <- COUNT (>0) b
I2: d <- DROP c a I 2:d<- MAP (*-1) c 2: d <- DROP c a I
3: e <- MAP (*-1) d
Works for #1, Works for #2, #4
‘Works for #5 *Automatic program synthesis of long programs with a learned garbage collector”. Zohar &

Wolf, NeurlPS 2018

https://arxiv.org/abs/1809.04682
https://arxiv.org/abs/1809.04682

Results Timeout for all methods = 5s

Model Success Ratio

GPS* { PCCoder[29] 7775+ 038 — Leading neural program synthesis technique
mechanisms other Mean—PEPS 8268 :t 033
than CA Mean-PEPS+U 82.70 + 0.32
N-PEPS 86.22 £+ 0.25

N-PEPS+U 87.07 £ 0.28

Train: programs uptil length 4
Test: programs of length 4

*Automatic program synthesis of long programs with a learned garbage collector”. Zohar & Wolf, NeurlPS 2018

https://arxiv.org/abs/1809.04682

Results

GPS {

Use aggregation
mechanisms other

than CA

Model Success Ratio
PCCoder [29] 77.75 £+ 0.38
Sum-PEPS 82.71 £ 0.32
Mean-PEPS 82.68 + 0.33
Mean-PEPS+U 82.70 £+ 0.32
N-PEPS 86.22 + 0.25
N-PEPS+U{ 87.07 £ 0.28

Train: programs uptil length 4
Test: programs of length 4

Timeout for all methods = 5s

N-PEPS significantly improves
the success rate over GPS and
other ablation baselines.

Model Length=35 Length =8 Length = 10 Length = 12 Length=14
PCCoder [2Y] 7091 £0.35 44.17 =045 28.18 £ 0.33 19.69 £ 0.34 14.71 £ 0.23
Sum-PEPS 76.45 £ 0.33 43.4 £ 0.56 28.96 & 0.27 20.94 £ 0.32 15.67 £ 0.32
Mean-PEPS 75.79 £ 0.31 44.42 £ 0.51 29.55 £029 2145 £ 0.27 16.35 & 0.27
Mean-PEPS+U 7599 £032 4449 £ 052 29754025 21.74 £ 0.30 16.45 4+ 0.33
N-PEPS 79.18 £ 0.31 47.23 £+ 0.49 32.3 + 0.34 23.34 £ 0.28 17.35 £ 0.31
N-PEPS+U 79.19 £ 030 46.31 &+ 0.61 31.84 £ 036 22.71 £ 0.28 16.68 & 0.21

Train: programs
uptil length 12

Test: programs of
lengths 5, 8, 10, 12
and 14

Takeaways

Connection
to our
Framework

Future Work

Input X = set of given 10 examples, Target Y = step t of the global
solution

Context Meta-Info W = Same as X

Support Context Z = PE solutions (values) + step-wise PE execution
states (keys) + execution state of step t -1 of the global solution (query)
Enhance = PE model (for PE solutions) + code interpreter (for execution
states)

Predict = Cross Aggregator (CA)

Generalize to programs with loops and conditionals.
Extend the idea to LLMs.

On-the-Fly Adaptation of Source Code Models RepoFusion: Training Code Models to

O u tl i ne (CAP Workshop, NeurIPS 2020) Understand Your Repository
(under review at NeurlPS 2023)

On-the-Fly Adaptation of Source Code Models

RepoFusion: Training Code Models to Understand
Yo

N

Introduction> Article 1 > > Article 2) > Final Thoughts

Learning to Combine Per-Example Repository Level Prompt Generation for
Solutions for Neural Program Synthesis Large Language Models of Code
(NeurlPS 2021) (ICML 2023)

On-the-Fly Adaptation of Source Code Models

Workshop on Computer Assisted Programming
NeurlPS 2020

Université f'”\

de Montréal

Task: Code Completion in an IDE

Our setting simulates editing a file in an IDE

e Objective: Complete the first token following the cursor (target hole)
e There can be code following the completion line.
e Rest of the line is blanked.

1. package com.asakusafw.windgate.retryable;

2. import java.io.IOException;
3. import java.text.MessageFormat;

31
32.
33.

Code 91. } catch (Exception e) A
following - 92. WGLOG.error (e, "E00QM1", Blanked-out portion
the line 93. profile.getName(),

Cursor Position

Motivation: Why Adaptation of Source Code Models?

e Models struggle when encountered with code not seen during training.

e Models need to adapt to local, unseen context

o New ldentifiers
o Organization or project specific coding constructs

e Variable naming conventions (get_access vs)
e Data structures/ libraries used (from import b)

o Developer-specific preferences
e for(inti=0,...)vs
e Comments before each line or each method

Targeted Support Set Adaptation (TSSA)

e Enhance: Obtain support tokens, e.g. frequent in current file but rare overall.

e Predict: Adapt the model based on the support context.
o Inner update: support window -> support token (k steps of gradient update)
o Outer update: hole window -> hole target (using updated parameters)

L. package org.oddjob; f) — Base Model Support Token Support Window
2. }mport]ava.ut}l.Propertles; . ’ Set 8y — 6 " Hole Target Hole Window
3. import org.oddjob.arooa.ArooaDescriptor; ==
19. import org.oddjob.arooa.standard. Adaptation
StandardArooaDescriptor;
20. import org.oddjob.arooa.standard. w‘l‘ t{ — —>| Support Loss, L]]
’Stéﬁﬁfﬂﬁpéffﬂanagem ' Model(6;_,) ¢
- B .
1ss. switch(inherit){ wy *i > 0 =0i1 —aVy, , L
150. case NONE: | k times
160. propertyManager = new StandardPropertyManager (l
. properties, propertySourceName);
R) property) . Prediction
162. break; wh th SEE— J\lodel(Ok) Hole Loss, L"
217, }

Results

Test Performance on Target Hole Prediction

Model Cross MRR@10 MRR@10 Recall@10 Recall@10
Entropy (All)(%) (Identifiers)(%) (Al)(%) (Identifiers) (%)

Base Model 5.222 £ 0.10 65.20 £+ 0.42 24.90 + 0.64 75.74 4+ 0.42 36.20 + 0.78

Dynamic Evaluation | 3.540 + 0.08 68.95 + 0.41 34.44 + 0.70 80.39 £ 0.39 48.86 + 0.82

TSSA-1 3.461 £ 0.07 66.94 4 0.40 35.76 + 0.70 81.00 4+ 0.38 52.04 + 0.82

TSSA-8 3.383 £ 0.06 67.52 4+ 0.40 35.14 £ 0.70 80.65 4+ 0.38 50.27 + 0.82

TSSA-16 3.240 + 0.06 68.63 £ 0.40 36.74 + 0.70 81.51 + 0.38 52.34 + 0.82

with single-layer GRU.

Base Model: no adaptation
Dynamic Evaluation*: Support tokens consist of tokens

from context before the target hole.

both before and after the target hole.

evaluation = 16 for our test data.

We set k = avg. # of updates performed by dynamic

*Open-Vocabulary Models for Source Code Karampatsis et al. (2020)

Model architecture: Seq2seq encoder decoder network

TSSA-k: TSSA with k updates with support tokens from

TSSA improves upon
adaptation (dynamic
evaluation) and

non-adaptation baselines,

even with half the #steps
on some metrics.

https://arxiv.org/abs/2003.07914

Results

Test Performance on Target Hole Prediction

Model Cross MRR@10 MRR@10 Recall@10 Recall@10
Entropy (All)(%) (Identifiers)(%) (All)(%) (Identifiers) (%)
Base Model 5.222 £ 0.10 65.20 & 0.42 24.90 £+ 0.64 75.74 £+ 0.42 36.20 & 0.78
Dynamic Evaluation | 3.540 4+ 0.08 68.95 + 0.41 34.44 + 0.70 80.39 + 0.39 48.86 + 0.82
TSSA-1 3.461 = 0.07 66.94 + 0.40 35.76 £+ 0.70 81.00 + 0.38 52.04 + 0.82
TSSA-8 3.383 £ 0.06 67.52 4+ 0.40 35.14 +£ 0.70 80.65 4+ 0.38 50.27 + 0.82
TSSA-16 3.240 + 0.06 68.63 + 0.40 36.74 - 0.70 81.51 + 0.38 52.34 + 0.82

Test Performance across different token-types

T8 IDENTIFIERS

554 LITERALS

B KEYWORDS

Bl SPECIAL SYMBOLS
[T OPERATORS

~

o

wv

Most of the improvement comes from
identifiers and literals.

w

Average Hole Entropy
=

N

fn

n _—

Token Type Base model TSSA-16 % Improvement
Identifiers 13.16 7.35 44.15
Literals 7.18 5.82 18.94

Takeaways

Connection °
to our °

Framework

Future Work

Input X = hole window, Target Y = target hole (next token after the
cursor)

Context Meta-Info W = position of the cursor + current file

Support Context Z = support tokens + support windows from the
current file

Enhance = targeted selection of support context, e.g. strategies based
on frequency of occurrence of tokens

Predict = TSSA

Better ways of obtaining the support context
o Extend the scope from current file to the entire repository.
o Automated, Example-specific selection

Leverage the power of pretrained LLMs
o Expensive to perform gradient updates

. On-the-Fly Adaptation of Source Code Models RepoFusion: Training Code Models to
O u tl ine (CAP Workshop, NeurIPS 2020) Understand Your Repository

On-the-Fly Adaptation of Source Code Models

RepoFusion: Training Code Models to Understand
Yo

(under review at NeurlPS 2023)

Introduction> Article 1 > Article 2 b Article 4

> Final Thoughts

Learning to Combine Per-Example Repository Level Prompt Generation for
Solutions for Neural Program Synthesis Large Language Models of Code
(NeurlPS 2021) (ICML 2023)

Repository-Level Prompt Generation for Large

Language Models of Code
ICML 2023

Université l'”\

de Montréal

Google Research

Code, data and trained checkpoints: https://github.com/shrivastavadisha/repo_level prompt _generation

https://github.com/shrivastavadisha/repo_level_prompt_generation

Motivation: Large Language Models (LLMs) of Code

e Used in code-assistants (e.g. GitHub Copilot, Bard).

e Struggle when encountered with code not seen during training.

o Proprietary Software
o WIP Code Project

e Finetuning on code from the local repository is often impractical
o Black-box access to strong code LLMs.
o Computationally expensive as well as challenging to update frequently.

e Building upon previous work, leverage relevant context from other files in the
repository (e.g. imports, parent classes), but only during inference.

Motivation: Large Language Models (LLMs) of Code

e Used in code-assistants (e.g. GitHub Copilot, Bard).

e Struggle when encountered with code not seen during training.

o Proprietary Software
o WIP Code Project

e Finetuning on code from the local repository is often impractical
o Black-box access to strong code LLMs.
o Computationally expensive as well as challenging to update frequently.

e Building upon previous work, leverage relevant context from other files in the
repository (e.g. imports, parent classes), but only during inference.

Select relevant repository context in a way that doesn’t
require access to the weights of the LLM.

Task: Single-line Code Completion in an IDE

Our setting simulates editing a file in an IDE

Objective: Complete the line following
the cursor (farget hole)
There can be code after the cursor line.

Current file : AffinityPropagation.java

import sampler.MaximizingGibbsSampler;

public int[] CurrentAssignments() {

MaximizingGibbsSampler mg = new
MaximizingGibbsSampler (numVars_) ;

mg. InitializeToAssignment (CurrentAssignments()) ;

S

Target Hole

Cursor Position

Task: Single-line Code Completion in an IDE

Our setting simulates editing a file in an IDE

e Objective: Complete the line following
the cursor (farget hole)
e There can be code after the cursor line.

Vanilla Training: given a prefix of code, predict
the next tokens.

Vanilla Inference (to match the training): take
context prior to the cursor in the current file
and predict the target hole.

Current file : AffinityPropagation.java

import sampler.MaximizingGibbsSampler;

public int[] CurrentAssignments() {

MaximizingGibbsSampler mg = new
MaximizingGibbsSampler (numVars_) ;

mg. InitializeToAssignment (CurrentAssignments()) ;

S

Target Hole

Cursor Position

Repository Context in the Prompt

InitializeToAssignment (CurrentAssignments()) ;

Take an LLM trained in the usual way, but use it 2 Predicted Hole
differently during inference. Codex
4} Prompt
During inference, in addition to the prior context in R __ GneD)
) currer.x ; s:!.g'nment_ = a.clone()
the current file, we add relevant context from the e
repository in the prompt. ’

> import sampler.MaximizingGibbsSampler;
public int[] CurrentAssignments() {

MaximizingGibbsSampler mg =
new MaximizingGibbsSampler (numVars_) ;

mg.
class MaximizingGibbsSampler { B
public void (int[] a)
{ currentAssignment_ = a.clone()
l alreadyInitialized = true;
justOneRound = true;

BB

Import file : MaximizingGibbsSampler.java

Repository Context in the Prompt

Take an LLM trained in the usual way, but use it
differently during inference.

During inference, in addition to the prior context in
the current file, we add relevant context from the
repository in the prompt.

To select relevant context, we want a method that
e Ultilizes Structure of the repository
e Utilizes Context in relevant files

Solution: Use domain knowledge to guide the
selection of relevant context via a set of prompt
proposals.

InitializeToAssignment (CurrentAssignments()) ;

Predicted Hole

Codex
4} Prompt
public void (int[] a)
{ currentAssignment = a.clone()
alreadyInitialized = true;
justOneRound = true;

}

> import sampler.MaximizingGibbsSampler;

public int[] CurrentAssignments() {

MaximizingGibbsSampler mg =

new MaximizingGibbsSampler (numVars_) ;

mg.

class MaximizingGibbsSampler { B

public void (int[] a)

{ currentAssignment = a.clone()
alreadyInitialized = true;
justOneRound = true;

BB

Import file : MaximizingGibbsSampler.java

Prompt Proposals

° : where to take the context from?
° : what to take from the prompt source?

Prompt Proposals

° : where to take the context from?
° : what to take from the prompt source?

/ 10 Prompt Sources \ / (ARISRIPGCONIeXt Types*\

e Current file In total, we ° LineS_ gfter the cursor
e Parent Class file propose a list * Identifiers
e Sibling file of 63 prompt e Field .decle!r_anons
e Similar name file proposals * Type identifiers
e Child Class file e String literals
e Import of the above e Method names
e Method names and

_ % _ bodies)

*Inspired by findings from On-the-Fly Adaptation of Source Code Models, Disha Shrivastava, Hugo Larochelle, Daniel Tarlow

https://openreview.net/pdf?id=FeVaSthrFst
https://openreview.net/profile?id=~Disha_Shrivastava1
https://openreview.net/profile?id=~Hugo_Larochelle1
https://openreview.net/profile?id=~Daniel_Tarlow1

Repo-Level Prompt Generator (RLPG)

Repository Current file : AffinityPropagation.java

B InitializeToAssignment (CurrentAssignments()) ;
model/ . R)
parameters/ import sampler.MaximizingGibbsSampler; 4} Predicted Hole
GibbsParameters.java o, 7 .
.................. FubLic -t tINCurieathsslyniance Ul Default Codex
utils/) Cies
................................. Context
sampler/ MaximizingGibbsSampler mg = new 4} Prompt
MaximizingGibbsSampler.java || MaximizingGibbsSampler (numVars) ; public void (int[] a)

........................ mglInitializeToAssignment(CurrentAssignments()); { currentAssignment = a.clone()

AffinityPropagation.java o0 Pienranatosase & & S sseraraterase » o & suetelie alreadyInitialized = true;
..................................... Target HOIe | justOn.Round_ = tr;.;

. Hole
| Position

}

= import sampler.MaximizingGibbsSampler;

public int[] CurrentAssignments() {

MaximizingGibbsSampler mg =
new MaximizingGibbsSampler (numVars_) ;
mg.

------- public void (int[] a)
Context from | ¢ currentAssignment_ = a.clone()
the Predicted alreadyInitialized = true;
Prompt justOneRound = true;
- . _ Proposal } -

[

class MaximizingGibbsSampler {

Import file : MaximizingGibbsSampler.java

Repo-Level Prompt Generator (RLPG)

Repository

Current file : AffinityPropagation.java

model/
parameters/
GibbsParameters.java

sampler/
MaximizingGibbsSampler.java

AN

import sampler.MaximizingGibbsSampler;

ublic int C tAssi t
P ic int[] CurrentAssignments() { Default

} Codex
Context

MaximizingGibbsSampler mg = new
MaximizingGibbsSampler (numVars) ;
mg l InitializeToAssignment (CurrentAssignments()) ;

..................................... Target Hole |
e
\
Hole
Position
Prompt
Engineer
@ Prompt
{} V Composer
B — e ey R
p=0 Pompt | 0 @ _.---f-
it Context from
p=1 Pr0p9§al - the Predicted
..... =———=—> Classifier ———>p=14 P
P=M | | R o Proposal
Predicted Prompt Proposal |~~~ -----_._
Repo-Level

Prompt Proposals

Repo-Level Prompt Generator

InitializeToAssignment (CurrentAssignments()) ;

Ay

Predicted Hole
Codex
4} Prompt
public void (int[] a)
{ currentAssignment_ = a.clone()
alreadyInitialized = true;

justOneRound_ = true;
}

import sampler.MaximizingGibbsSampler;

public int[] CurrentAssignments() {

MaximizingGibbsSampler mg =
new MaximizingGibbsSampler (numVars_) ;
mg.

class MaximizingGibbsSampler {

public void (int[]

{ currentAssignment_ = a.clone()
alreadyInitialized = true;
justOneRound_ = true;

}

[

a)

Import file : MaximizingGibbsSampler.java

Prompt Proposal Classifier

e Multi-label binary classifier that learns to select a prompt proposal that is likely to
lead to a successful prediction for the target hole.

e Success = When inclusion of the context from the prompt proposal in the prompt
leads to an accurate prediction of the hole.

e Example-Specific: different prediction conditioned on the hole.

Results

Table 2. Performance of the oracle relative to Codex.

Data Success Rate Success Rate Rel. 1
Split Codex(%) Oracle(%) over Codex(%)
Train 59.78 80.29 34.31

Val 62.10 79.05 27.28

Test 58.73 79.63 35.58

Including contexts from our prompt proposals during
inference is quite useful even though Codex has not
seen them during training.

Results

Table 2. Performance of the oracle relative to Codex.

Table 3. Success Rate (SR) of different methods on the test data

Data Success Rate Success Rate Rel. 1 when averaged across all holes
Split Codex(%) Oracle(%) over Codex(%) :
- Method Success Rate(%) Rel. 1(%)
Train 59.78 80.29 34.31
Val 62.10 79.05 27.28 Codex (Chen et al., 2021) 58.73 -
Test 58.73 79.63 35.58 Omcle 19.63 3558
(Random 58.13 -1.02
Retrioval Random NN 58.98 043
Baselines < File-level BM25 63.14 7.51
Identifier Usage (Random) 64.93 10.55
Using RLPG with prompt L Identifier Usage (NN) 64.91 10.52
proposal classifier shows Non-lesrLr:Deg { Fixed Prompt Proposal 65.78 12.00
significant improvements. RLEORUBEED B0 1205
Learned RLPG-H 68.51 16.65
RLPG RLPG-R 67.80 15.44

Takeaways

Connection o
to our °
Framework

Future Work °

Input X = all tokens prior to the cursor in the current file, Target Y =
tokens after the cursor till end of line.

Context Meta-Info W = position of the cursor + current file's repository
Support Context Z = context from a single prompt proposal predicted
by RLPG

Enhance = Prompt Proposals + RLPG

Predict = LLM of Code

Automatically combine contexts from multiple prompt proposals.
Scale the evaluation to larger data and include comparisons with more
code LLMs.

On-the-Fly Adaptation of Source Code Models RepoFusion: Training Code Models to

O u tl i ne (CAP Workshop, NeurIPS 2020) Understand Your Repository
(under review at NeurlPS 2023)

On-the-Fly Adaptation of Source Code Models

RepoFusion: Training Code Models to Understand
Yo

Introduction> Article 1 > Article 2 > Article 3 > Article 4 » Final Thoughts

Learning to Combine Per-Example Repository Level Prompt Generation for
Solutions for Neural Program Synthesis Large Language Models of Code
(NeurlPS 2021) (ICML 2023)

RepoFusion: Training Code Models to

Understand Your Repository
arXiv 2023 (under review)

Université th “oMila servicenow.

de Montréal

Code, data and trained checkpoints: https://huggingface.co/RepoFusion

https://huggingface.co/RepoFusion

Task: Single-line Code Completion in an IDE

Our setting simulates editing a file in an IDE

e Objective: Complete the line following Current file : AffinityPropagation.java
the cursor (target hOIe) import sampler.MaximizingGibbsSampler; B
e There can be code after the cursor line. . .
public int[] CurrentAssignments() {

MaximizingGibbsSampler mg = new
MaximizingGibbsSampler (numVars_) ;
mg. InitializeToAssignment (CurrentAssignments()) ;

\ @

Cursor Position

RepoFusion

Train a model to combine multiple relevant contexts coming from the repository (repo
contexts) such that it leads to an accurate prediction of the target hole.

public void UpgradeSubscription(string session) { controllers/ import services.Auth.*;
Account.upgrade (Auth.user ("bearer", session)); » import models.Account. *;
Billing.java e
class Account ({ .
static void upgrade (int uid){ ... } models/ Surrounding Context
: : - : ; Account.java
static Tier getTier(int uid) { ‘ public float getMonthlyCharges (string) {
var tier =
class Auth { services/ Account .get;Tier (Auth.user ("bearer", .))
static int user (string authMethod, string token) || Auth.java - _Target Hole
Repo Contexts (RCs) Repository Current File: Billing.java
RC1 + Surrounding Context encoder>
RC 2 + Surrounding Context encoder> concat> . decoder> Predicted Hole

RC N + Surrounding Context | encoder > .

Results

RepoFusion (220M)
outperforms ~73X larger
(CodeGen-16B) models trained
with next-token prediction.

N = #RCs
| = size (# tokens) of each RC

RepoFusion (220M) is at par
with ~70X larger
StarCoder-15.5B model trained
with Fill-in-the-Middle.

Model Size Effective Context Success Rate

(#params) context length type (%)
CodeT5-base (FT) 0.22B 2048 prior 41.82 +0.12
CodeT5-base (FT) 0.22B 4096 prior 46.45 + 0.12
CodeT5-large (FT) 0.77B 2048 prior 4473 £ 0.12
CodeT5-large (FT) 0.77B 4096 prior 48.92 +0.12
SantaCoder 1.1B 2048 prior 39.51 £0.12
CodeGen 2B 2048 prior 49.45 + 0.12
CodeGen 6B 2048 prior 49.19 +0.12
CodeGen 16B 2048 prior 5020 +0.12
CodeT5-base (FT) 0.22B 2048 post+prior 48.89 £+ 0.12
CodeT5-base (FT) 0.22B 4096 post+prior 49.97 £ 0.12
CodeT5-large (FT) 0.77B 2048 post+prior 51.72 £ 0.12
CodeT5-large (FT) 0.77B 4096 post+prior 52.43 £0.12
SantaCoder 1.1B 2048 post+prior 56.78 £ 0.12
CodeGen 2B 2048 post+prior 9318 20,12
CodeGen 6B 2048 post+prior 54.03 £0.12
CodeGen 16B 2048 post+prior 54.09 = 0.12
RepoFusion (N = 4, = 512) 0.22B 2048 NT-Prior-Last 65.96 + 0.12
RepoFusion (N = 8,1 = 512) 0.22B 4096 NT-Prior-Last 70.38 £ 0.11
RepoFusion (N = 32,1 = 768) 0.22B 24576 NT-Prior-Last 77.32 = 0.10
StarCoderBase 15.5B 8192 prior 52.97 £ 0.45
StarCoderBase 15.5B 8192 post+prior 79.79 £ 0.36
RepoFusion (N = 16,1 = 512) 0.22B 8192 NT-Prior-Last 73.67 + 0.43
RepoFusion (N = 32, [= 2500) 0.22B 80000 NT-Prior-Last 78.33 + 0.37

Model Size Effective Context Success Rate
R e S u It S (#params) context length type (%)
CodeT5-base (FT) 0.22B 2048 prior 41.82 4+ 0.12
CodeT5-base (FT) 0.22B 4096 prior 46.45 +0.12
CodeT5-large (FT) 0.77B 2048 prior 4473 £ 0.12
CodeT5-large (FT) 0.77B 4096 prior 48.92 +0.12
SantaCoder 1.1B 2048 prior 39.51 £0.12
CodeGen 2B 2048 prior 49.45 +0.12
49.19 4+ 0.12
50.20 & 0.12
G 48.89 + 0.12
o : : pr . :
outper Training smaller models with repository context . 801D
(CodeGer i i : : . pr 51.72£0.12
T using RepoFusion is better or at par with training I 2535005
significantly larger models without such context. & se7s<on
br 53.18 £ 0.12
br - 54.03 £ 0.12
br 54.09 £+ 0.12
N = #RCs RepoFusion (N = 4, | = 512) 0.22B 2048 NT-Prior-Last 65.96 + 0.12
| = size (# tokens) of each RC RepoFusion (N = 8,1 = 512) 0.22B 4096 NT-Prior-Last 70.38 £ 0.11
RepoFusion (N = 32,1 = 768) 0.22B 24576 NT-Prior-Last 77.32 £ 0.10
RepoFusion (220M) is at par StarCoderBase 15.5B 8192 prior 52.97 + 0.45
) GO (BT StarCoderB 15.5B 8192 t+pri 79.79 + 0.36
. oderbpase . oSt+prior . v
StarCoder-15.58 model trained RepoFusion (N = 16, I = 512) 0.22B 8192 NiP .p L 73.67 + 0.43
. ileine _M;i eporusion = , L= " -Prior-Last v i
with Fill-in-the-Middle. RepoFusion (N = 32,1 = 2500) 0.22B 80000 NT-Prior-Last 78.33 + 0.37

751
S\i 70+
O 65!
bt
<
601
["2]
O
5 55+
—— [=512
Y 5ol
—_— |=768
g 5 10 15 20 25 30

Prompt Proposal Contexts

Performance scales with
incorporation diverse
repo contexts from
multiple sources.

Model Size Effective Context Success Rate

(#params) context length type (%)
CodeT5-base (FT) 0.22B 2048 prior 41.82 +0.12
CodeT5-base (FT) 0.22B 4096 prior 46.45 +0.12
CodeT5-large (FT) 0.77B 2048 prior 4473 £ 0.12
CodeT5-large (FT) 0.77B 4096 prior 48.92 +0.12
SantaCoder 1.1B 2048 prior 39.51 £0.12
CodeGen 2B 2048 prior 49.45 + 0.12
CodeGen 6B 2048 prior 49.19 +0.12
CodeGen 16B 2048 prior 5020 +0.12
CodeT5-base (FT) 0.22B 2048 post+prior 48.89 £+ 0.12
CodeT5-base (FT) 0.22B 4096 post+prior 49.97 £ 0.12
CodeT5-large (FT) 0.77B 2048 post+prior 5172 £0.12
CodeT5-large (FT) 0.77B 4096 post+prior 52.43 £0.12
SantaCoder 1.1B 2048 post+prior 56.78 £ 0.12
CodeGen 2B 2048 post+prior 9318 20,12
CodeGen 6B 2048 post+prior 54.03 £0.12
CodeGen 16B 2048 post+prior 54.09 = 0.12
RepoFusion (N = 4, = 512) 0.22B 2048 NT-Prior-Last 65.96 £ 0.12
RepoFusion (N = 8,1 = 512) 0.22B 4096 NT-Prior-Last 70.38 £ 0.11
RepoFusion (N = 32,1 = 768) 0.22B 24576 NT-Prior-Last 77.32 = 0.10
StarCoderBase 15.5B 8192 prior 52.97 £0.45
StarCoderBase 15.5B 8192 post+prior 79.79 £ 0.36
RepoFusion (N = 16,1 = 512) 0.22B 8192 NT-Prior-Last 73.67 + 0.43
RepoFusion (N = 32, [= 2500) 0.22B 80000 NT-Prior-Last 78.33 + 0.37

Takeaways

e Input X = all tokens prior to the cursor in the current file, Target Y =
tokens after the cursor till the end of line.

Context Meta-Info W = position of the cursor + current file’s repository
Support Context Z = multiple repo contexts

Enhance = module for obtaining repo contexts

Predict = RepoFusion

Connection
to our
Framework

Leverage contextual cues from other relevant sources such as API
Future Work documentations, StackOverflow, bug reports, GitHub issues.

We create and release Stack-Repo, a dataset of 200 Java repositories with permissive licenses
and near-deduplicated files that are augmented with three types of repository contexts.

https://huggingface.co/RepoFusion

On-the-Fly Adaptation of Source Code Models RepoFusion: Training Code Models to

O u tl i ne (CAP Workshop, NeurIPS 2020) Understand Your Repository
(under review at NeurlPS 2023)

On-the-Fly Adaptation of Source Code Models

RepoFusion: Training Code Models to Understand
Yo

Introduction> Article 1 > Article 2 > Article 3 > Article 4 } Final Thoughts

Learning to Combine Per-Example Repository Level Prompt Generation for
Solutions for Neural Program Synthesis Large Language Models of Code
(NeurlPS 2021) (ICML 2023)

Broad Applicability of Our Framework

Size of the Support Context

e Limited context can be given as input to Predict

e Combining multiple relevant contexts such as in RepoFusion
o Determining the optimal number and size of each relevant context

e LLM with large context window
e Retrieval-augmented models that work with external memory

e Comes with increased inference costs

Broad Applicability of Our Framework

Size of the Support Context

Capturing the Dependence between Enhance and Predict

e Predict should learn to effectively leverage Z provided by Enhance

e Enhance should use the feedback signal from Predict to guide the
selection of Z

e Joint training of Enhance and Predict difficult in practise.
e Separate training offers more flexibility

o Predict: Larger LLM, trained on large data
o Enhance: Smaller model, task-specific training on curated data.

Broad Applicability of Our Framework

Size of the Support Context

Capturing the Dependence between Enhance and Predict

Generality of the Support Context

Automatic selection of Z conditioned on the task

Instruction-tuned LLM as both Enhance and Predict

(@]

@)
@)

Generate relevant contextual cues when prompted with instructions
capturing the task (challenging to make this work across diverse tasks)

Use the generated contextual cues as input to generate predictions
Can do these iteratively to refine the predictions.

Broad Applicability of Our Framework

Size of the Support Context

Capturing the Dependence between Enhance and Predict

Generality of the Support Context

Human-in-the-loop

Human-interpretable contextual cues from Enhance
o More control over what goes in the Predict stage such as prompt proposals

Utilize human feedback to come up with better metrics and refine
predictions to better align with user’s preferences.

Broad Applicability of Our Framework

Size of the Support Context

Capturing the Dependence between Enhance and Predict

Generality of the Support Context

Human-in-the-loop

Performance-Latency Tradeoff

Optimizing resource allocation between Enhance and Predict (especially
during inference) to match specific time and computational requirements.

Going Forward

Modeling the Code Ecosystem

Derive contextual cues from the complex
programming workflow

e lterative and dynamic aspect
o Different program stages: writing ->
testing-> committing -> maintaining
o Codebases keep evolving
e Interaction with tools
o Compiler
Static Analyzer
o GitHub
o Web, e.g. StackOverflow
e Interaction with other developers

o Code reviewers
o Collaborators

(@)

Going Forward

Modeling the Code Ecosystem

Derive contextual cues from the complex
programming workflow

e lterative and dynamic aspect

o Different program stages: writing ->
testing-> committing -> maintaining

o Codebases keep evolving

e Interaction with tools
o Compiler

Static Analyzer

o GitHub

o Web, e.g. StackOverflow
e Interaction with other developers

(@)

o Code reviewers
o Collaborators

Modeling the User

Inform the selection of contextual cues
and predictions based on user interactions

e Metrics based on user preferences
o Acceptance rate
o User edits

e Mode of user interaction [1]
o Accelerated: fixed contextual cues,
single, short predictions
o Exploratory: diverse contextual
cues, several, long predictions
e Changing user beliefs [2]
o Dynamically adapt the model
o Align more with user values:
agency, creativity, trust, verifiability

[1] “Grounded Copilot: How Programmers Interact with Code-Generating Models”. Barke et al. (2022)
[2] “Approach Intelligent Writing Assistants Usability with Seven Stages of Action”. Bhat et al. (2023)

https://arxiv.org/abs/2206.15000
https://arxiv.org/abs/2304.02822

Thank You

Questions/ Comments

n.

