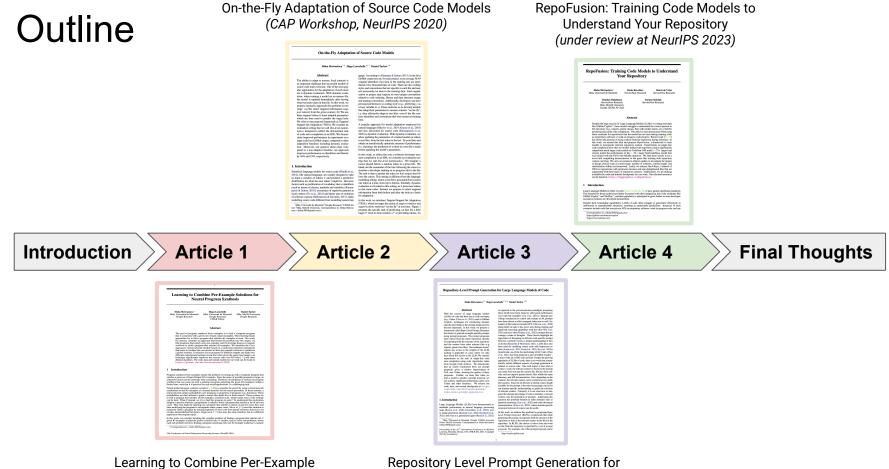
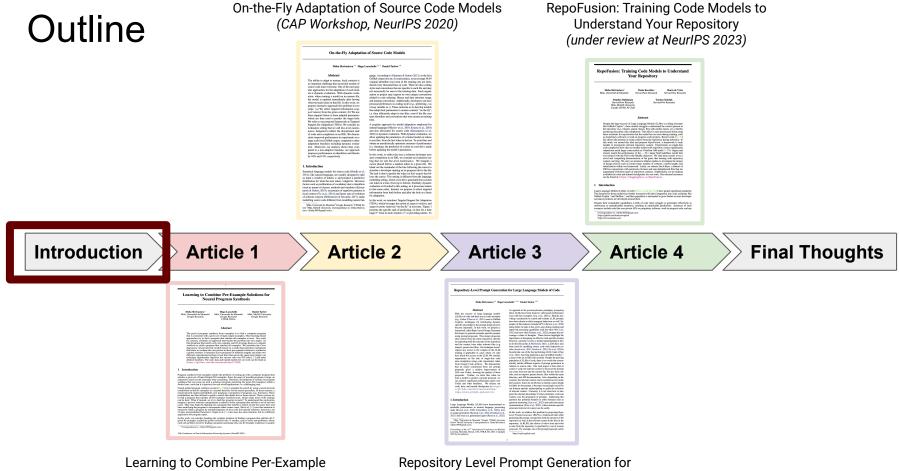
Contextual Cues for Deep Learning Models of Code

Disha Shrivastava



Solutions for Neural Program Synthesis (NeurIPS 2021) Repository Level Prompt Generation for Large Language Models of Code (ICML 2023)



Solutions for Neural Program Synthesis (NeurIPS 2021) Repository Level Prompt Generation for Large Language Models of Code (ICML 2023)

• Source Code: Exciting application domain for deep learning methods.

```
# Given a string representing musical
                                             # 1. Split the string into a list of
notes in a special ASCII format,
                                             notes.
# parse this string and compute a total
                                             # 2. Iterate over the list and compute the
                                             total length of the music.
Length of the music in beats.
# Legend:
                                             # 3. Print the result.
  'o' - whole note. last four beats
  'o/' - half note, last two beats
                                             # 1.
# '. |' - quarter note, Last one beat
                                             notes = notes.split()
notes = 'o o | . | o | o | . | . | . | . | o o'
                                             # 2.
                                             total_length = 0
                                             For note in notes:
                                                 if note == 'o':
   Code Generation
                                                      total length += 4
                                                 if note == 'o':
                                                      total_length += 2
                                                  if note == '.|':
                                                      total length += 1
                                             # 3.
                                             print(total_length)
```

• Source Code: Exciting application domain for deep learning methods.

Given a string representing musical # 1. Split the string into a list of notes in a special ASCII format, notes. *# parse this string and compute a total* # 2. Iterate over the list and compute the Length of the music in beats. total length of the music. # Leaend: # 3. Print the result. 'o' - whole note. last four beats 'o/' - half note, last two beats # 1. '. /' - quarter note, last one beat notes = notes.split() notes = 'o o | . | o | o | . | . | . | . | o o'# 2. total length = 0 For note in notes: if note == 'o': Code Generation total length += 4 if note == 'o': total length += 2 if note == '. ': total length += 1 # 3. print(total length)

1 #include <<u>stdio.h</u>> 1 #include <<u>stdio.h</u>> 2 int main() { 2 int main() { int a[i]; 3 int a[100], i, n, count = 0; int i; scanf("%d", &n); scanf("%d", &n); scanf("%d", &a[i]); for (i = 0; i < n; i++) 7 int count = 0; scanf("%d", &a[i]); for (i = 0; i < n; i++) { for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { for (int j = 0; j < n; j++) 10 if (a[i] == a[i]) if (a[i] == a[i]) count = count + 1; 10 count = count + 1;11 12 3 11 3 13 3 12 - N 14 if (count == a[i]) 13 if (count == n) 15 printf("Yes"); 14 printf("Yes"); 16 else 15 else 17 printf("No"); 16 printf("No"); 18 return 0; 17 return 0; 19 } 18 }

```
Code Repair
```

• Source Code: Exciting application domain for deep learning methods.

Given a string representing musical notes in a special ASCII format, # parse this string and compute a total Length of the music in beats. # Legend: # 'o' - whole note, last four beats # 'o' - half note, last two beats

'. |' - quarter note, Last one beat

```
notes = 'o o| .| o| o| .| .| .| .| o o'
```

Code Generation

1. Split the string into a list of
notes.
2. Iterate over the list and compute the
total length of the music.
3. Print the result.
1.
notes = notes.split()
2.
total_length = 0
For note in notes:

```
if note == 'o':
    total_length += 4
if note == 'o|':
    total_length += 2
if note == '.|':
    total length += 1
```

3.
print(total_length)

1 #	include < <u>stdio.h</u> >	1	<pre>#include <<u>stdio.h</u>></pre>
2 i	nt main() {	2	int main() {
3	int a[i];	3	int a[100], i, n, count = 0;
4	int i;		
5	scanf("%d", &n);	4	scanf("%d", &n);
6	scanf("%d", &a[i]);	5	for $(i = 0; i < n; i++)$
7	int count = 0;	6	scanf("%d", &a[i]);
8	for (i = 0; i < n; i++) {	7	for (i = 0; i < n; i++) {
9	for (j = 0; j < n; j++) {	8	for (int j = 0; j < n; j++) {
10	if (a[i] == a[j])	9	if (a[i] == a[j])
11	count = count + 1;	10	count = count + 1;
12	}	11	}
13	}	12	
14	if (count == a[i])	13	if (count == n)
15	printf("Yes");	14	printf("Yes");
16	else	15	
17	<pre>printf("No");</pre>	16	<pre>printf("No");</pre>
18	return 0;	17	
19 }		18	}

Code Repair

// Translate from C	to Python	<pre>def add_one(x: int);</pre>
<pre>int add_one (int x</pre>){	m = 1
int m = 1;		while (x & m):
while (x&m) {		$x = (x ^ m)$
$x = x \wedge m;$		m <<= 1
m <<= 1;		$x = (x \wedge m)$
}		return x
$x = x \wedge m;$		
return x; }	Code Translation	

• Source Code: Exciting application domain for deep learning methods.

Given a string representing musical # 1. Split the string into a list of notes in a special ASCII format, notes. *# parse this string and compute a total* # 2. Iterate over the list and compute the Length of the music in beats. total length of the music. # Leaend: # 3. Print the result. 'o' - whole note. last four beats 'o/' - half note, last two beats # 1. '. /' - quarter note, last one beat notes = notes.split() notes = 'o o | . | o | o | . | . | . | . | o o'# 2. total length = 0 For note in notes: if note == 'o': Code Generation total length += 4 if note == 'o': total length += 2 if note == '.|': Slow Version(Runtime=4,18s) Fast Version(Runtime=2.52s: ~1.66x Speedup) t = int(input()) import heapq for i in range(1, t+1): n, b = [int(s) for s in input().split(" ")] # input() reads a string with a line of input, stripping the '\n'(newline) at the end. houses = [int(s) for s in input().split(" ")] # This is all you need for most Kickstart problems. houses.sort() #all_data = [] t = int(input()) # read a line with a single integer Algorithmic Difference: Using a heap result = 0 for i in range(1, t + 1): for h in houses: instead of pre-sorting the list once allows n, b = [int(s) for s in input().split(" ")] # read a list of integers, 2 in this case if b >= h: prices = [int(s) for s in input().split(" ")] early termination of the main loop. result += 1 #all_data.append([n,b,prices]) b -= h heapq.heapify(prices) print("Case #{}: {}".format(i, result)) houses = θ while prices and b > 0: new house = heapq.heappop(prices) b -= new_house if h >= 0: houses += 1 print("Case #{}: {}".format(i, houses))

1 #	include < <u>stdio.h</u> >	1	<pre>#include <<u>stdio.h</u>></pre>
2 i	nt main() {	2	<pre>int main() {</pre>
3	int a[i];	3	int a[100], i, n, count = 0;
4	int i;		
5	scanf("%d", &n);	4	scanf("%d", &n);
6	scanf("%d", &a[i]);	5	for $(i = 0; i < n; i++)$
7	int count = 0;	6	scanf("%d", &a[i]);
8	for (i = 0; i < n; i++) {	7	for (i = 0; i < n; i++) {
9	for (j = 0; j < n; j++) {	8	for (int j = 0; j < n; j++) {
LO	if (a[i] == a[j])	9	if (a[i] == a[j])
.1	count = count + 1;	10	count = count + 1;
.2	}	11	}
.3	}	12	}
L4	if (count == a[i])	13	if (count == n)
.5	printf("Yes");	14	printf("Yes");
L6	else	15	else
.7	<pre>printf("No");</pre>	16	<pre>printf("No");</pre>
.8	return 0;	17	return 0;
19 }		18	}

Code Repair

// Translate from C	to Python	<pre>def add one(x: int):</pre>
<pre>int add_one (int x</pre>){	m = 1
int m = 1;		while (x & m):
while $(x \& m) \{$		$x = (x \wedge m)$
$x = x \wedge m;$		m <<= 1
m <<= 1;		$x = (x \wedge m)$
}		return x
x = x ^ m;		
return x; }	Code Translation	

Code Analysis

• Source Code: Exciting application domain for deep learning methods.

"Learning to Improve Code Efficiency". Chen, Binghong, et al. (2022)

https://denigma.app/

- Source Code: Exciting application domain for deep learning methods.
- Motivation

Helping Non-Programmers

- Enable non-expert users to solve problems in an automated fashion.
- Programming requires technical skills.
- Generate programs from user's intent expressed in forms that are natural to them such as NL.

- Source Code: Exciting application domain for deep learning methods.
- Motivation

Helping Non-Programmers

Enable non-expert users to solve problems in an automated fashion.

- Programming requires technical skills.
- Generate programs from user's intent expressed in forms that are natural to them such as NL.

Helping Programmers

Boost productivity of software developers.

- Divert attention from mundane tasks.
- Focus on tasks that require creative thinking.
- Code completion to avoid typing boilerplate code.

- Source Code: Exciting application domain for deep learning methods.
- Motivation

Helping Non-Programmers

- Enable non-expert users to solve problems in an automated fashion.
- Programming requires technical skills.
- Generate programs from user's intent expressed in forms that are natural to them such as NL.

Helping Programmers

Boost productivity of software developers.

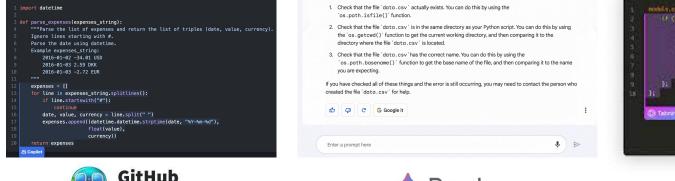
- Divert attention from mundane tasks.
- Focus on tasks that require creative thinking.
- Code completion to avoid typing boilerplate code.

Advancing ML Research

Several challenges with modeling source code.

- Rigid Syntax
- Structure
- Discrete nature
- Multiple symbolic representation forms
- Continuously evolving

- Source Code: Exciting application domain for deep learning methods.
- Motivation
- LLMs of code have potential for huge impact.



Already part of consumer-facing products

Bard

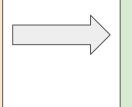
Central Theme

Effectively Harness Contextual Cues

Identify and select

relevant contextual

cues from a given task.



Leverage these contextual

cues effectively in deep

learning models of code.

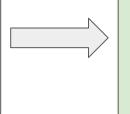
Central Theme

Effectively Harness Contextual Cues

Identify and select

relevant contextual

cues from a given task.



Leverage these contextual

cues effectively in deep

learning models of code.

Improves Generalization

- Adding information that the model wouldn't normally have access to.
- Directing model's attention to specific information.

More Context-Aware Predictions

- Adapt to unseen tasks
- Improve performance on existing tasks.

Given

- **X** = Input Context (code in the current file before the cursor)
- **Y** = Actual Target (tokens following the cursor till the end of the line)
- **W** = Context Meta-information (content in other files in the repository)

Goal: Effectively harness contextual cues based on **X** and **W** such that the predicted target $\hat{\mathbf{Y}}$ is close to the actual target **Y**.

- **X** = Input Context (code in the current file before the cursor)
- **Y** = Actual Target (tokens following the cursor till the end of the line)
- **W** = Context Meta-information (content in other files in the repository)

Goal: Effectively harness contextual cues based on **X** and **W** such that the predicted target $\hat{\mathbf{Y}}$ is close to the actual target **Y**.

Context Enhancement

 $\mathbf{Z} = Enhance(\mathbf{X}, \mathbf{W})$

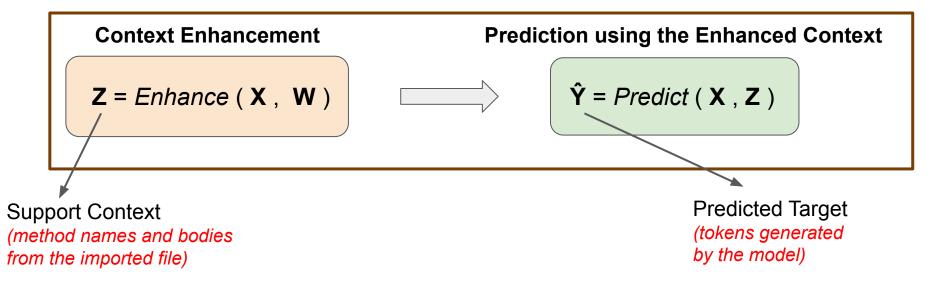
Support Context (method names and bodies from the imported file)

Given

Given

- **X** = Input Context (code in the current file before the cursor)
- **Y** = Actual Target (tokens following the cursor till the end of the line)
- **W** = Context Meta-information (content in other files in the repository)

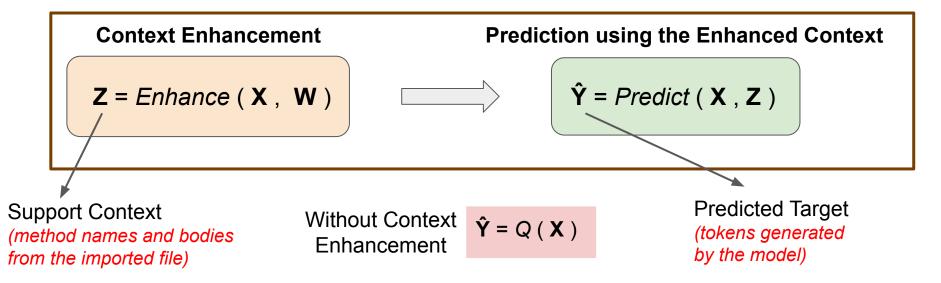
Goal: Effectively harness contextual cues based on **X** and **W** such that the predicted target $\hat{\mathbf{Y}}$ is close to the actual target **Y**.



Given

- **X** = Input Context (code in the current file before the cursor)
- **Y** = Actual Target (tokens following the cursor till the end of the line)
- **W** = Context Meta-information (content in other files in the repository)

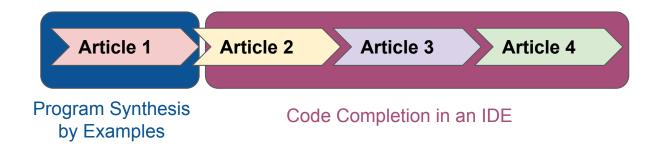
Goal: Effectively harness contextual cues based on **X** and **W** such that the predicted target $\hat{\mathbf{Y}}$ is close to the actual target **Y**.

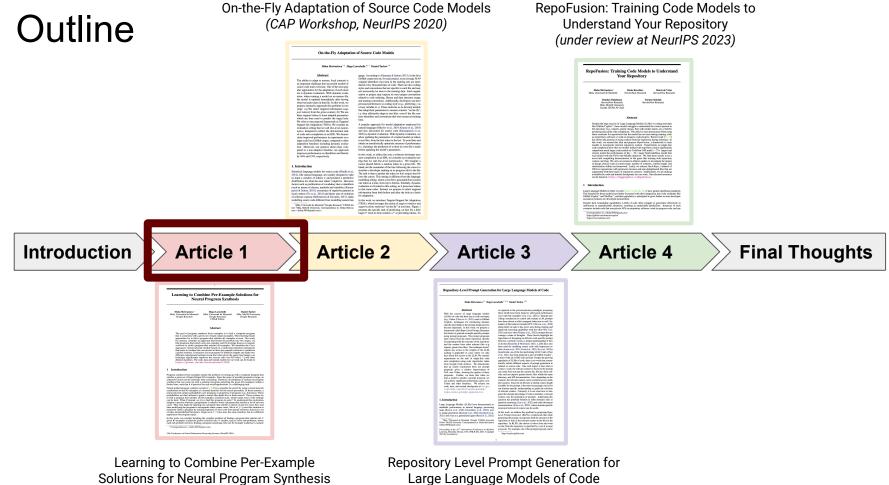


Thesis Overview

All articles in this thesis are based on our general **Enhance-Predict framework**.

- We propose novel approaches for Enhance and Predict stages.
- We focus on two main tasks.





(NeurIPS 2021)

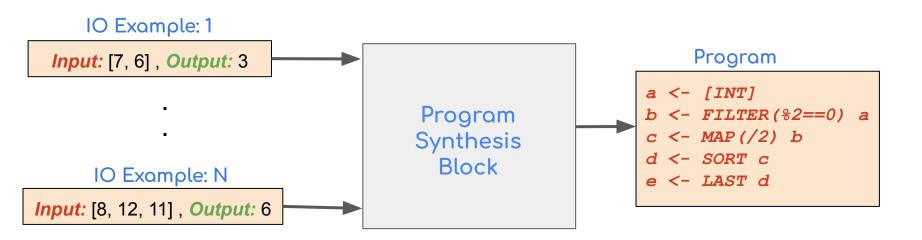
Large Language Models of Code (ICML 2023)

Learning to Combine Per-Example Solutions for Neural Program Synthesis NeurIPS 2021

Google Research

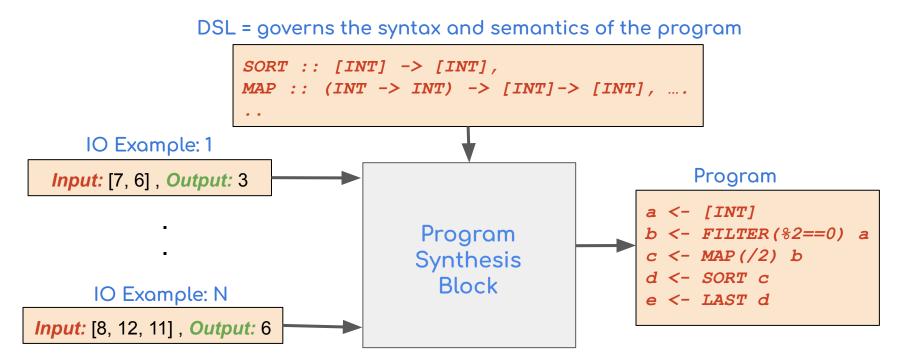
Code, data and trained checkpoints: https://github.com/shrivastavadisha/N-PEPS

Task: Program Synthesis by Examples



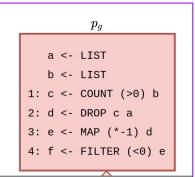
• Given a set of N IO examples, find a program that satisfies those examples.

Task: Program Synthesis by Examples



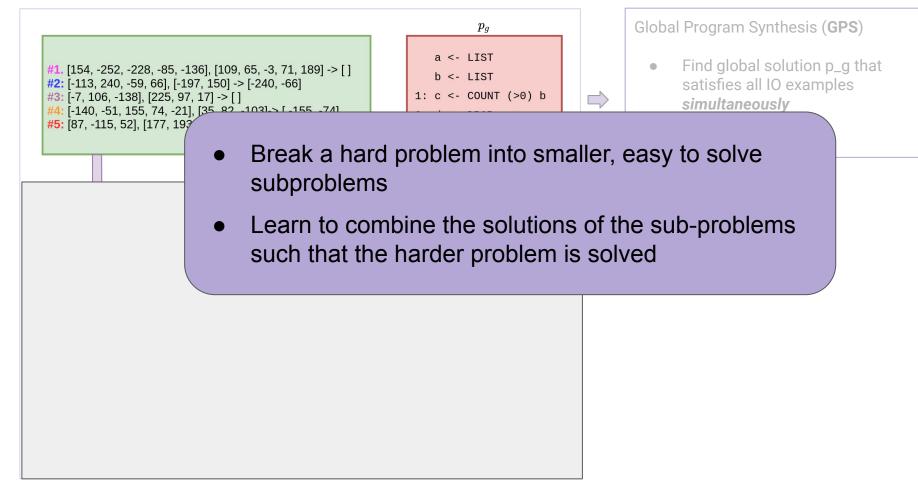
- Given a set of N IO examples, find a program that satisfies those examples.
- Given a *timeout* value to be practically meaningful.

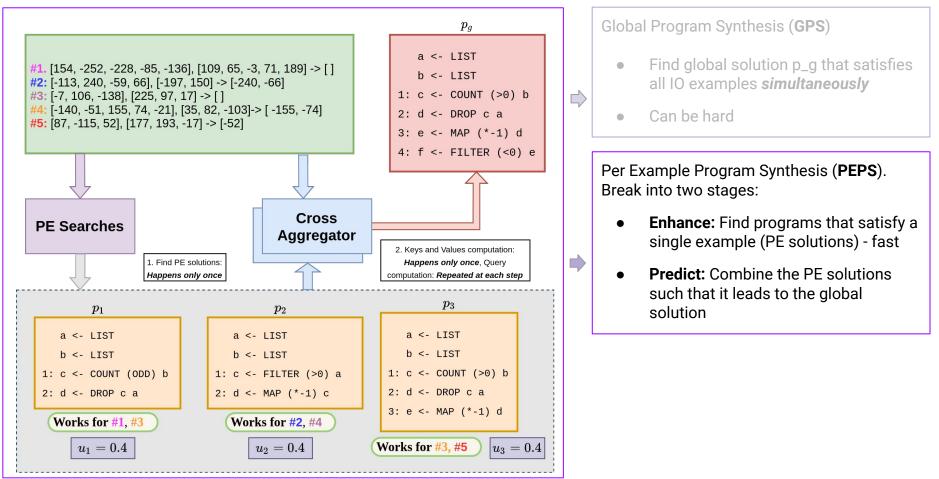
#1. [154, -252, -228, -85, -136], [109, 65, -3, 71, 189] -> []
#2: [-113, 240, -59, 66], [-197, 150] -> [-240, -66]
#3: [-7, 106, -138], [225, 97, 17] -> []
#4: [-140, -51, 155, 74, -21], [35, 82, -103]-> [-155, -74]
#5: [87, -115, 52], [177, 193, -17] -> [-52]

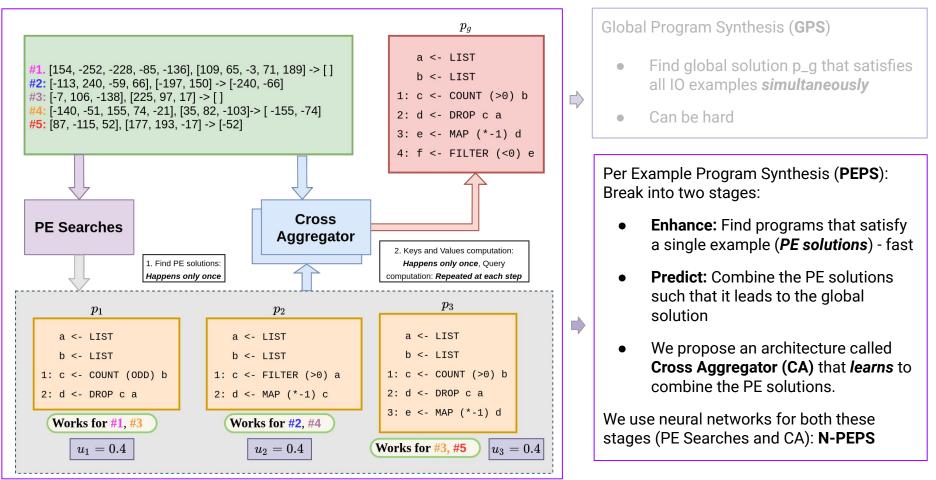


Global Program Synthesis (GPS)

- Find **global solution** p_g that satisfies all IO examples *simultaneously*
- Can be hard

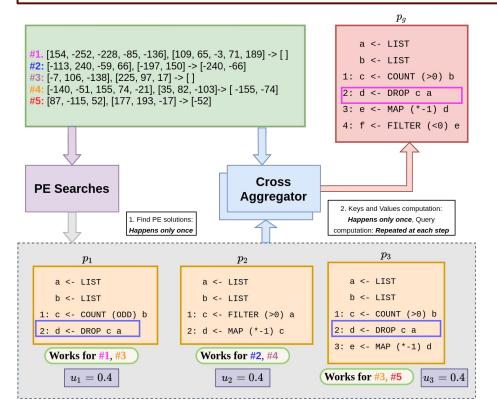






Cross Aggregator (CA)

Idea: If a PE program state* has high relevance with the global program state at a given step, then the following PE program line is likely to be useful for synthesizing the next line of P_g .

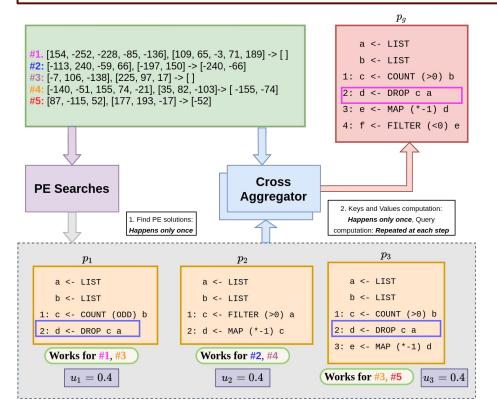


* Program state at step t = Vector representing the values of variables obtained by executing t lines of the program.

*Automatic program synthesis of long programs with a learned garbage collector". Zohar & Wolf, *NeurIPS 2018*

Cross Aggregator (CA)

Idea: If a PE program state* has high relevance with the global program state at a given step, then the following PE program line is likely to be useful for synthesizing the next line of P_g .



Model: Multi-head cross-attention mechanism

Query = Global program state at step t

Key = PE program state at step t

Value = PE program line t+1

*Automatic program synthesis of long programs with a learned garbage collector". Zohar & Wolf, NeurIPS 2018

Results

	Model	Success Ratio
GPS*	{ PCCoder [29]	77.75 ± 0.38
Use aggregation mechanisms other than CA	$\begin{cases} Sum-PEPS \\ Mean-PEPS \\ Mean-PEPS + \mathcal{U} \\ N-PEPS \\ N-PEPS + \mathcal{U} \end{cases}$	$\begin{array}{c} 82.71 \pm 0.32 \\ 82.68 \pm 0.33 \\ 82.70 \pm 0.32 \\ 86.22 \pm 0.25 \\ \textbf{87.07} \pm \textbf{0.28} \end{array}$

Train: programs uptil length 4 *Test:* programs of length 4

Leading neural program synthesis technique for the space of programs we work on

*Automatic program synthesis of long programs with a learned garbage collector". Zohar & Wolf, NeurIPS 2018

Timeout for all methods = 5s

Results

Timeout for a	all methods = 5s
---------------	------------------

	Model	Success Ratio
GPS {	PCCoder [29]	77.75 ± 0.38
Use aggregation mechanisms other than CA	Sum-PEPS Mean-PEPS Mean-PEPS+U N-PEPS N-PEPS+U	$\begin{array}{c} 82.71 \pm 0.32 \\ 82.68 \pm 0.33 \\ 82.70 \pm 0.32 \\ 86.22 \pm 0.25 \\ \textbf{87.07} \pm \textbf{0.28} \end{array}$

Train: programs uptil length 4 *Test:* programs of length 4

N-PEPS significantly improves the success rate over GPS and other ablation baselines.

Model	Length $= 5$	Length = 8	Length = 10	Length = 12	Length=14	Train: programs
PCCoder [29]	70.91 ± 0.35	44.17 ± 0.45	28.18 ± 0.33	19.69 ± 0.34	14.71 ± 0.23	uptil length 12
Sum-PEPS Mean-PEPS Mean-PEPS+U N-PEPS N-PEPS+U	$\begin{array}{c} 76.45 \pm 0.33 \\ 75.79 \pm 0.31 \\ 75.99 \pm 0.32 \\ 79.18 \pm 0.31 \\ \textbf{79.19} \pm \textbf{0.30} \end{array}$	$\begin{array}{c} 43.4 \pm 0.56 \\ 44.42 \pm 0.51 \\ 44.49 \pm 0.52 \\ \textbf{47.23} \pm \textbf{0.49} \\ 46.31 \pm 0.61 \end{array}$	$\begin{array}{c} 28.96 \pm 0.27 \\ 29.55 \pm 0.29 \\ 29.75 \pm 0.25 \\ \textbf{32.3} \pm \textbf{0.34} \\ 31.84 \pm 0.36 \end{array}$	$\begin{array}{c} 20.94 \pm 0.32 \\ 21.45 \pm 0.27 \\ 21.74 \pm 0.30 \\ \textbf{23.34} \pm \textbf{0.28} \\ 22.71 \pm 0.28 \end{array}$	$\begin{array}{c} 15.67 \pm 0.32 \\ 16.35 \pm 0.27 \\ 16.45 \pm 0.33 \\ \textbf{17.35} \pm \textbf{0.31} \\ 16.68 \pm 0.21 \end{array}$	<i>Test:</i> programs of lengths 5, 8, 10, 12 and 14

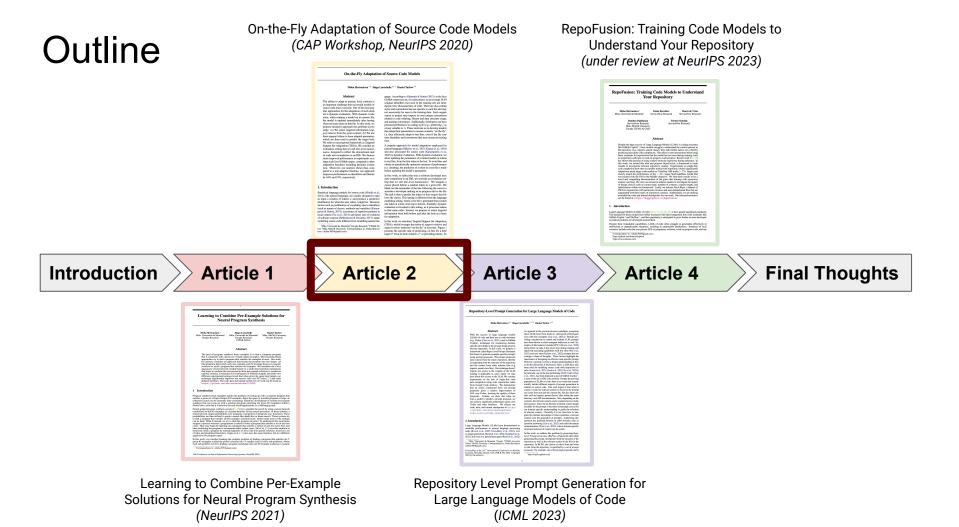
Takeaways

Connection to our Framework

- Input X = set of given IO examples, Target Y = step t of the global solution
- **Context Meta-Info W** = Same as X
- Support Context Z = PE solutions (values) + step-wise PE execution states (keys) + execution state of step t -1 of the global solution (query)
- Enhance = PE model (for PE solutions) + code interpreter (for execution states)
- **Predict** = Cross Aggregator (CA)

Future Work

- Generalize to programs with loops and conditionals.
- Extend the idea to LLMs.



On-the-Fly Adaptation of Source Code Models Workshop on Computer Assisted Programming NeurIPS 2020

Google Research

Task: Code Completion in an IDE

Our setting simulates editing a file in an IDE

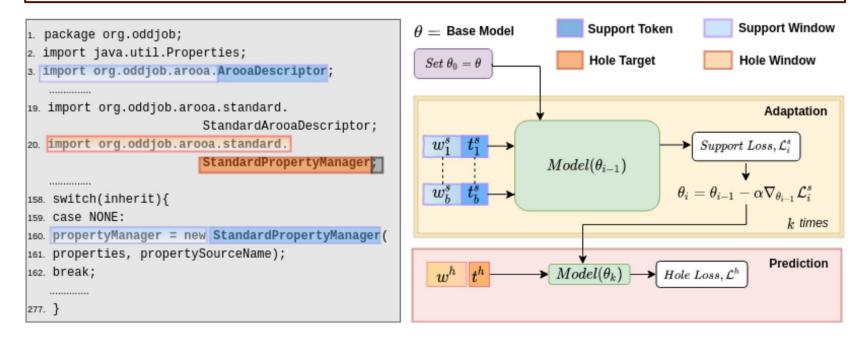
- Objective: Complete the first token following the cursor (target hole)
- There can be code following the completion line.
- Rest of the line is blanked.

Motivation: Why Adaptation of Source Code Models?

- Models struggle when encountered with code not seen during training.
- Models need to adapt to local, unseen context
 - New Identifiers
 - Organization or project specific coding constructs
 - Variable naming conventions (get_access vs getAccess)
 - Data structures/ libraries used (from google3 import b)
 - Developer-specific preferences
 - for (int i = 0, ...) vs for (int j = 0, ...)
 - Comments before each line or each method

Targeted Support Set Adaptation (TSSA)

- Enhance: Obtain support tokens, e.g. frequent in current file but rare overall.
- **Predict:** Adapt the model based on the support context.
 - Inner update: support window -> support token (k steps of gradient update)
 - *Outer update*: hole window -> hole target (using updated parameters)



Results

Test Performance on Target Hole Prediction

Model	Cross Entropy	MRR@10 (All)(%)	MRR@10 (Identifiers)(%)	Recall@10 (All)(%)	Recall@10 (Identifiers) (%)
Base Model	5.222 ± 0.10	65.20 ± 0.42	24.90 ± 0.64	75.74 ± 0.42	36.20 ± 0.78
Dynamic Evaluation	3.540 ± 0.08	$\textbf{68.95} \pm \textbf{0.41}$	34.44 ± 0.70	80.39 ± 0.39	48.86 ± 0.82
TSSA-1	3.461 ± 0.07	66.94 ± 0.40	35.76 ± 0.70	81.00 ± 0.38	52.04 ± 0.82
TSSA-8	3.383 ± 0.06	67.52 ± 0.40	35.14 ± 0.70	80.65 ± 0.38	50.27 ± 0.82
TSSA-16	$\textbf{3.240} \pm \textbf{0.06}$	68.63 ± 0.40	$\textbf{36.74} \pm \textbf{0.70}$	$\textbf{81.51} \pm \textbf{0.38}$	$\textbf{52.34} \pm \textbf{0.82}$

- **Model architecture:** Seq2seq encoder decoder network with single-layer GRU.
- Base Model: no adaptation
- **Dynamic Evaluation*:** Support tokens consist of tokens from context before the target hole.
- **TSSA-k:** TSSA with k updates with support tokens from both before and after the target hole.
- We set k = avg. # of updates performed by dynamic evaluation = 16 for our test data.

*Open-Vocabulary Models for Source Code Karampatsis et al. (2020)

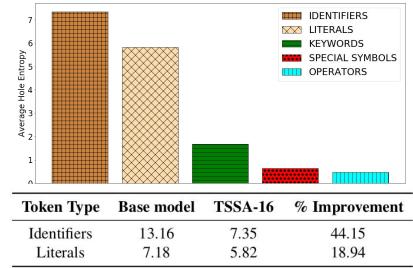
TSSA improves upon adaptation (dynamic evaluation) and non-adaptation baselines, even with half the #steps on some metrics.

Results

Test Performance on Target Hole Prediction

Model	Cross Entropy	MRR@10 (All)(%)	MRR@10 (Identifiers)(%)	Recall@10 (All)(%)	Recall@10 (Identifiers) (%)
Base Model	5.222 ± 0.10	65.20 ± 0.42	24.90 ± 0.64	75.74 ± 0.42	36.20 ± 0.78
Dynamic Evaluation	3.540 ± 0.08	$\textbf{68.95} \pm \textbf{0.41}$	34.44 ± 0.70	80.39 ± 0.39	48.86 ± 0.82
TSSA-1	3.461 ± 0.07	66.94 ± 0.40	35.76 ± 0.70	81.00 ± 0.38	52.04 ± 0.82
TSSA-8	3.383 ± 0.06	67.52 ± 0.40	35.14 ± 0.70	80.65 ± 0.38	50.27 ± 0.82
TSSA-16	$\textbf{3.240} \pm \textbf{0.06}$	68.63 ± 0.40	$\textbf{36.74} \pm \textbf{0.70}$	$\textbf{81.51} \pm \textbf{0.38}$	$\textbf{52.34} \pm \textbf{0.82}$

Test Performance across different token-types



Most of the improvement comes from identifiers and literals.

Takeaways

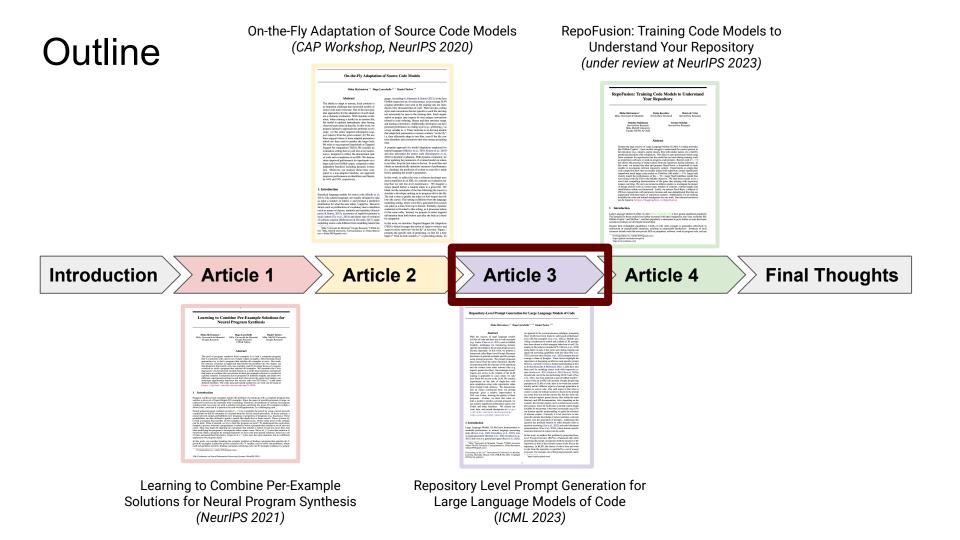
- Input X = hole window, Target Y = target hole (next token after the cursor)
- **Context Meta-Info W** = position of the cursor + current file
- **Support Context Z** = support tokens + support windows from the current file
- Enhance = targeted selection of support context, e.g. strategies based on frequency of occurrence of tokens
- **Predict =** TSSA
- Better ways of obtaining the support context
 - Extend the scope from current file to the entire repository.
 - Automated, Example-specific selection
- Leverage the power of pretrained LLMs
 - Expensive to perform gradient updates

Future Work

Connection

to our

Framework



Repository-Level Prompt Generation for Large Language Models of Code ICML 2023

Google Research

Code, data and trained checkpoints: https://github.com/shrivastavadisha/repo_level_prompt_generation

Motivation: Large Language Models (LLMs) of Code

- Used in code-assistants (e.g. GitHub Copilot, Bard).
- Struggle when encountered with code not seen during training.
 - Proprietary Software
 - WIP Code Project
- Finetuning on code from the local repository is often impractical
 - Black-box access to strong code LLMs.
 - Computationally expensive as well as challenging to update frequently.
- Building upon previous work, leverage relevant context from other files in the repository (e.g. imports, parent classes), but only during inference.

Motivation: Large Language Models (LLMs) of Code

- Used in code-assistants (e.g. GitHub Copilot, Bard).
- Struggle when encountered with code not seen during training.
 - Proprietary Software
 - WIP Code Project
- Finetuning on code from the local repository is often impractical
 - Black-box access to strong code LLMs.
 - Computationally expensive as well as challenging to update frequently.
- Building upon previous work, leverage relevant context from other files in the repository (e.g. imports, parent classes), but only during inference.

Select relevant repository context in a way that doesn't require access to the weights of the LLM.

Task: Single-line Code Completion in an IDE

Our setting simulates editing a file in an IDE

- Objective: Complete the line following the cursor (target hole)
- There can be code after the cursor line.

<pre>import sampler.MaximizingGibbsSampl</pre>	Ler;
<pre>public int[] CurrentAssignments()</pre>	t.
·····	
1	
1	
·	
, MaximizingGibbsSampler mg = new	
MaximizingGibbsSampler mg = new	Assignments());
MaximizingGibbsSampler mg = new MaximizingGibbsSampler(numVars_);	Assignments()); Target Hole

Cursor Position

Task: Single-line Code Completion in an IDE

Our setting simulates editing a file in an IDE

- Objective: Complete the line following the cursor (target hole)
- There can be code after the cursor line.

Vanilla Training: given a prefix of code, predict the next tokens.

Vanilla Inference (to match the training): take context prior to the cursor in the current file and predict the target hole.

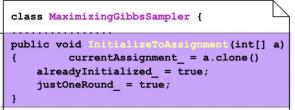
import sampler.MaximizingGibbsSamp	ler:
<pre>public int[] CurrentAssignments()</pre>	ť
}	
MaximizingGibbsSampler mg = new	
<pre>MaximizingGibbsSampler(numVars_); mg. InitializeToAssignment(Current</pre>	Acciermonts ());
mg. InitializeToAssignment(Current	ASSIGNMENTS());
	Target Hole

Repository Context in the Prompt

Take an LLM trained in the usual way, but use it differently during inference.

During inference, in addition to the prior context in the current file, we add relevant context from the repository in the prompt.

InitializeTo	Assignment (Currer	<pre>htAssignments());</pre>
	{\	Predicted Hole
	Codex	
		Prompt
{ cu: already	d InitializeToAss rrentAssignment_ yInitialized_ = t eRound_ = true;	= a.clone()
<pre>public int</pre>	pler.MaximizingGi [] CurrentAssignm GibbsSampler mg = zingGibbsSampler (ents() {



Repository Context in the Prompt

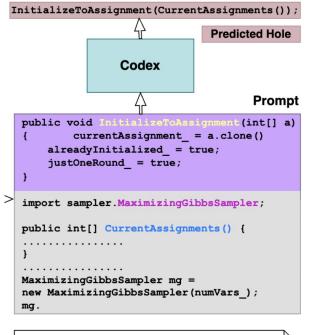
Take an LLM trained in the usual way, but use it differently during inference.

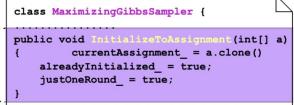
During inference, in addition to the prior context in the current file, we add relevant context from the repository in the prompt.

To select relevant context, we want a method that

- Utilizes Structure of the repository
- Utilizes Context in relevant files

Solution: Use domain knowledge to guide the selection of relevant context via a set of **prompt proposals.**



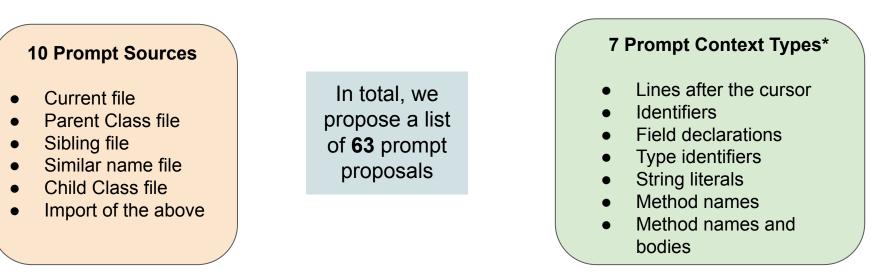


Prompt Proposals

- **Prompt Source**: where to take the context from?
- **Prompt Context Type**: what to take from the prompt source?

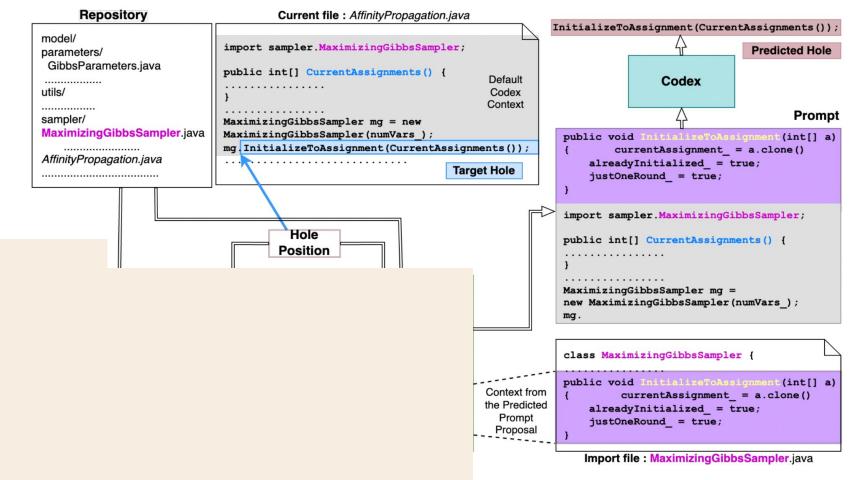
Prompt Proposals

- **Prompt Source**: where to take the context from?
- **Prompt Context Type**: what to take from the prompt source?

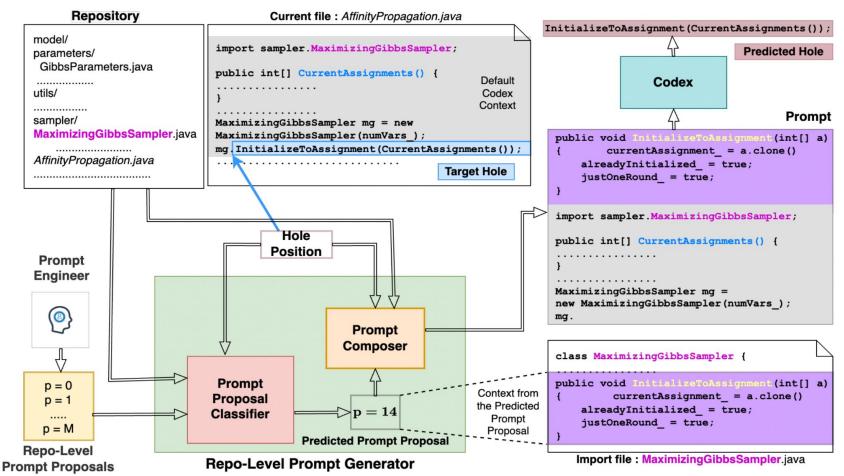


*Inspired by findings from On-the-Fly Adaptation of Source Code Models, Disha Shrivastava, Hugo Larochelle, Daniel Tarlow

Repo-Level Prompt Generator (RLPG)



Repo-Level Prompt Generator (RLPG)



Prompt Proposal Classifier

• Multi-label binary classifier that *learns* to select a prompt proposal that is likely to lead to a successful prediction for the target hole.

• **Success** = When inclusion of the context from the prompt proposal in the prompt leads to an accurate prediction of the hole.

• *Example-Specific:* different prediction conditioned on the hole.

Results

Tab	Table 2. Performance of the oracle relative to Codex.						
Data	Success Rate	Success Rate	Rel. ↑				
Split	Codex(%)	Oracle(%)	over Codex(%)				
Train	59.78	80.29	34.31				
Val	62.10	79.05	27.28				
Test	58.73	79.63	35.58				

Including contexts from our prompt proposals during inference is quite useful even though Codex has not seen them during training.

Results

Tab	Table 2. Performance of the oracle relative to Codex.						
Data Split	Success Rate Codex(%)	Success Rate Oracle(%)	Rel. ↑ over Codex(%)				
Train	59.78	80.29	34.31				
Val	62.10	79.05	27.28				
Test	58.73	79.63	35.58				

Table 3. Success Rate (SR) of different methods on the test data when averaged across all holes.

Codex(%)	Madaad	$\mathbf{C}_{\mathbf{r}} = \mathbf{D}_{\mathbf{r}} \mathbf{A}_{\mathbf{r}}(\mathbf{C}_{\mathbf{r}})$	$\mathbf{D} = \mathbf{L} + (\mathbf{n}')$
34.31	Method	Success Rate(%)	Rel. ↑(%)
27.28	Codex (Chen et al., 2021)	58.73	-
35.58	Oracle	79.63	35.58
Retrieval Baselines	Random	58.13	-1.02
	Random NN	58.98	0.43
	File-level BM25	63.14	7.51
	Identifier Usage (Random)	64.93	10.55
	Identifier Usage (NN)	64.91	10.52
Non-learned	Fixed Prompt Proposal	65.78	12.00
RLPG	RLPG-BM25	66.41	13.07
Learned 5	RLPG-H	68.51	16.65
	RLPG-R	67.80	15.44

Using RLPG with prompt proposal classifier shows significant improvements.

Takeaways

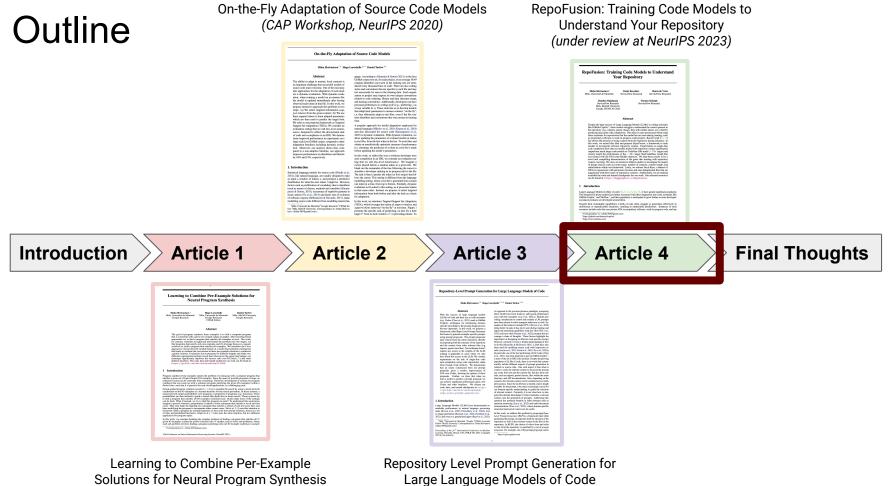
Connection to our Framework

- Input X = all tokens prior to the cursor in the current file, Target Y = tokens after the cursor till end of line.
- **Context Meta-Info W** = position of the cursor + current file's repository
- Support Context Z = context from a single prompt proposal predicted by RLPG
- Enhance = Prompt Proposals + RLPG
- **Predict** = LLM of Code

Automatically combine contexts from multiple prompt proposals.

• Scale the evaluation to larger data and include comparisons with more code LLMs.

Future Work



(NeurIPS 2021)

Large Language Models of Code (ICML 2023)

RepoFusion: Training Code Models to Understand Your Repository arXiv 2023 (under review)

Code, data and trained checkpoints: https://huggingface.co/RepoFusion

Task: Single-line Code Completion in an IDE

Our setting simulates editing a file in an IDE

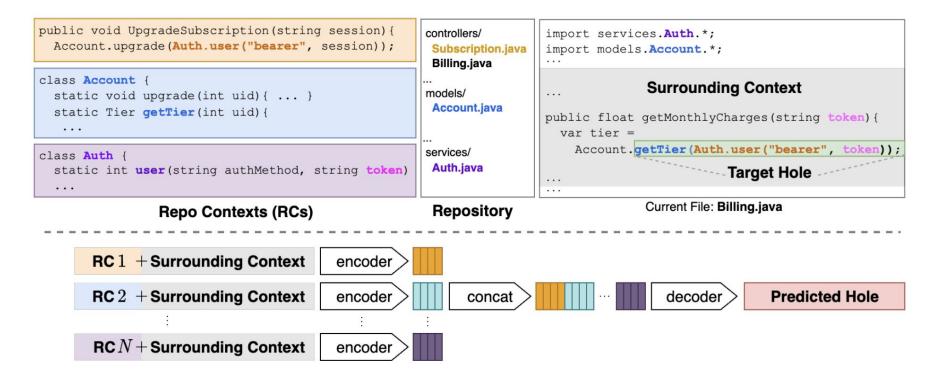
- Objective: Complete the line following the cursor (target hole)
- There can be code after the cursor line.

<pre>import sampler.MaximizingGibbsSamp</pre>	ler;
<pre>public int[] CurrentAssignments()</pre>	ł
}	
MaximizingGibbsSampler mg = new	
<pre>MaximizingGibbsSampler mg = new MaximizingGibbsSampler(numVars_);</pre>	
	Assignments());
MaximizingGibbsSampler(numVars_);	Assignments());

Cursor Position

RepoFusion

Train a model to **combine multiple relevant contexts** coming from the repository (repo contexts) such that it leads to an **accurate** prediction of the target hole.



Results	Model	Size (#params)	Effective context length	Context type	Success Rate (%)
NESUIIS	CodeT5-base (FT) CodeT5-base (FT) CodeT5-large (FT) CodeT5-large (FT)	0.22B 0.22B 0.77B 0.77B	2048 4096 2048 4096	prior prior prior prior	$\begin{array}{c} 41.82\pm 0.12\\ 46.45\pm 0.12\\ 44.73\pm 0.12\\ 48.92\pm 0.12\end{array}$
	SantaCoder CodeGen CodeGen CodeGen	1.1B 2B 6B 16B	2048 2048 2048 2048 2048	prior prior prior prior	$\begin{array}{c} 39.51 \pm 0.12 \\ 49.45 \pm 0.12 \\ 49.19 \pm 0.12 \\ 50.20 \pm 0.12 \end{array}$
RepoFusion (220M) outperforms ~73X larger (CodeGen-16B) models trained with next-token prediction.	CodeT5-base (FT) CodeT5-base (FT) CodeT5-large (FT) CodeT5-large (FT)	0.22B 0.22B 0.77B 0.77B	2048 4096 2048 4096	post+prior post+prior post+prior post+prior	$\begin{array}{c} 48.89 \pm 0.12 \\ 49.97 \pm 0.12 \\ 51.72 \pm 0.12 \\ 52.43 \pm 0.12 \end{array}$
	SantaCoder CodeGen CodeGen CodeGen	1.1B 2B 6B 16B	2048 2048 2048 2048	post+prior post+prior post+prior post+prior	$\begin{array}{c} 56.78 \pm 0.12 \\ 53.18 \pm 0.12 \\ 54.03 \pm 0.12 \\ 54.09 \pm 0.12 \end{array}$
N = #RCs I = size (# tokens) of each RC	RepoFusion ($N = 4, l = 512$) RepoFusion ($N = 8, l = 512$) RepoFusion ($N = 32, l = 768$)	0.22B 0.22B 0.22B	2048 4096 24576	NT-Prior-Last NT-Prior-Last NT-Prior-Last	$\begin{array}{c} 65.96 \pm 0.12 \\ 70.38 \pm 0.11 \\ 77.32 \pm 0.10 \end{array}$
RepoFusion (220M) is at par with ~70X larger	StarCoderBase	15.5B	8192	prior	52.97 ± 0.45
StarCoder-15.5B model trained	StarCoderBase	15.5B	8192	post+prior	79.79 ± 0.36
with Fill-in-the-Middle.	RepoFusion ($N = 16$, $l = 512$) RepoFusion ($N = 32$, $l = 2500$)	0.22B 0.22B	8192 80000	NT-Prior-Last NT-Prior-Last	$\begin{array}{c} 73.67 \pm 0.43 \\ 78.33 \pm 0.37 \end{array}$

Results	Model	Size (#params)	Effective context length	Context type	Success Rate (%)
NESUIIS	CodeT5-base (FT) CodeT5-base (FT) CodeT5-large (FT) CodeT5-large (FT)	0.22B 0.22B 0.77B 0.77B	2048 4096 2048 4096	prior prior prior prior	$\begin{array}{c} 41.82\pm 0.12\\ 46.45\pm 0.12\\ 44.73\pm 0.12\\ 48.92\pm 0.12\end{array}$
	SantaCoder CodeGen	1.1B 2B	2048 2048	prior prior	$\begin{array}{c} 39.51 \pm 0.12 \\ 49.45 \pm 0.12 \end{array}$
(CodeGer with ne) using Repo	naller models with Fusion is better o / larger models wi	r at par	with train	ing ^{or} or	$\begin{array}{c} 49.19 \pm 0.12 \\ 50.20 \pm 0.12 \\ \hline \\ 48.89 \pm 0.12 \\ 49.97 \pm 0.12 \\ 51.72 \pm 0.12 \\ 52.43 \pm 0.12 \\ \hline \\ 56.78 \pm 0.12 \\ \hline \\ 53.18 \pm 0.12 \\ \hline \\ 54.03 \pm 0.12 \\ \hline \\ 54.09 \pm 0.12 \end{array}$
N = #RCs I = size (# tokens) of each RC	RepoFusion ($N = 4$, $l = 512$) RepoFusion ($N = 8$, $l = 512$) RepoFusion ($N = 32$, $l = 768$)	0.22B 0.22B 0.22B	2048 4096 24576	NT-Prior-Last NT-Prior-Last NT-Prior-Last	$\begin{array}{c} 65.96 \pm 0.12 \\ 70.38 \pm 0.11 \\ 77.32 \pm 0.10 \end{array}$
RepoFusion (220M) is at par	StarCoderBase	15.5B	8192	prior	52.97 ± 0.45
with ~70X larger StarCoder-15.5B model trained	StarCoderBase	15.5B	8192	post+prior	$\textbf{79.79} \pm \textbf{0.36}$
with Fill-in-the-Middle.	RepoFusion ($N = 16, l = 512$) RepoFusion ($N = 32, l = 2500$)	0.22B 0.22B	8192 80000	NT-Prior-Last NT-Prior-Last	$\begin{array}{c} 73.67 \pm 0.43 \\ 78.33 \pm 0.37 \end{array}$

Results	Model	Size (#params)	Effective context length	Context type	Success Rate (%)
I Coulto	CodeT5-base (FT) CodeT5-base (FT) CodeT5-large (FT)	0.22B 0.22B 0.77B	2048 4096 2048	prior prior prior	$\begin{array}{c} 41.82\pm 0.12\\ 46.45\pm 0.12\\ 44.73\pm 0.12\end{array}$
	CodeT5-large (FT)	0.77B	4096	prior	48.92 ± 0.12
75 (%) 70	SantaCoder CodeGen CodeGen CodeGen	1.1B 2B 6B 16B	2048 2048 2048 2048	prior prior prior prior	$\begin{array}{c} 39.51 \pm 0.12 \\ 49.45 \pm 0.12 \\ 49.19 \pm 0.12 \\ 50.20 \pm 0.12 \end{array}$
Success Ratio	CodeT5-base (FT) CodeT5-base (FT) CodeT5-large (FT) CodeT5-large (FT)	0.22B 0.22B 0.77B 0.77B	2048 4096 2048 4096	post+prior post+prior post+prior post+prior	$\begin{array}{c} 48.89 \pm 0.12 \\ 49.97 \pm 0.12 \\ 51.72 \pm 0.12 \\ 52.43 \pm 0.12 \end{array}$
50 = 50 = 1 = 768 45 = 5 = 10 = 15 = 20 = 25 = 30 # Prompt Proposal Contexts	SantaCoder CodeGen CodeGen CodeGen	1.1B 2B 6B 16B	2048 2048 2048 2048 2048	post+prior post+prior post+prior post+prior	$\begin{array}{c} 56.78 \pm 0.12 \\ 53.18 \pm 0.12 \\ 54.03 \pm 0.12 \\ 54.09 \pm 0.12 \end{array}$
	RepoFusion ($N = 4, l = 512$) RepoFusion ($N = 8, l = 512$) RepoFusion ($N = 32, l = 768$)	0.22B 0.22B 0.22B	2048 4096 24576	NT-Prior-Last NT-Prior-Last NT-Prior-Last	$\begin{array}{c} 65.96 \pm 0.12 \\ 70.38 \pm 0.11 \\ 77.32 \pm 0.10 \end{array}$
Performance scales with					
incorporation diverse	StarCoderBase	15.5B	8192	prior	52.97 ± 0.45
repo contexts from	StarCoderBase	15.5B	8192	post+prior	$\textbf{79.79} \pm \textbf{0.36}$
multiple sources.	RepoFusion ($N = 16, l = 512$) RepoFusion ($N = 32, l = 2500$)	0.22B 0.22B	8192 80000	NT-Prior-Last NT-Prior-Last	$\begin{array}{c} 73.67 \pm 0.43 \\ 78.33 \pm 0.37 \end{array}$

Takeaways

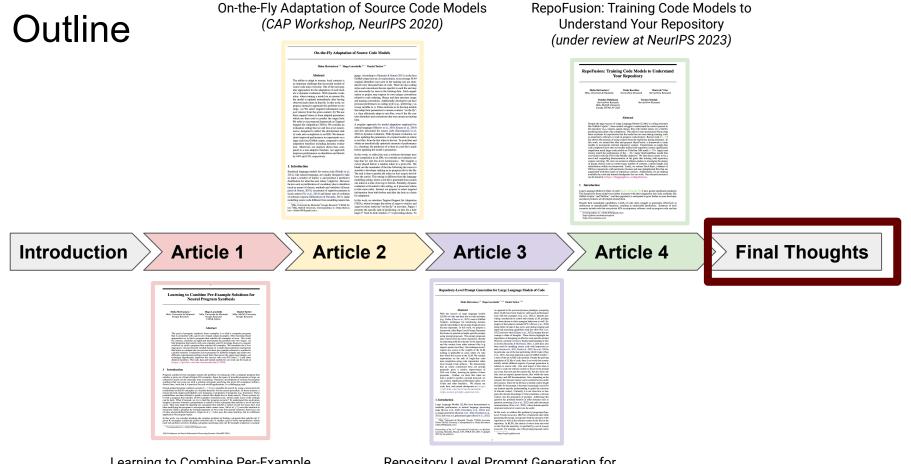
Connection to our Framework

- **Input X** = all tokens prior to the cursor in the current file, **Target Y** = tokens after the cursor till the end of line.
- **Context Meta-Info W** = position of the cursor + current file's repository
- **Support Context Z** = multiple repo contexts
- Enhance = module for obtaining repo contexts
- **Predict** = RepoFusion

Future Work

Leverage contextual cues from other relevant sources such as API documentations, StackOverflow, bug reports, GitHub issues.

We create and release <u>Stack-Repo</u>, a dataset of 200 Java repositories with permissive licenses and near-deduplicated files that are augmented with three types of repository contexts.



Learning to Combine Per-Example Solutions for Neural Program Synthesis (NeurIPS 2021) Repository Level Prompt Generation for Large Language Models of Code (ICML 2023)

Size of the Support Context

- Limited context can be given as input to Predict
- Combining multiple relevant contexts such as in RepoFusion
 - Determining the optimal number and size of each relevant context
- LLM with large context window
- Retrieval-augmented models that work with external memory
- Comes with increased inference costs

Size of the Support Context

Capturing the Dependence between Enhance and Predict

- Predict should learn to effectively leverage Z provided by Enhance
- Enhance should use the feedback signal from Predict to guide the selection of Z
- Joint training of Enhance and Predict difficult in practise.
- Separate training offers more flexibility
 - Predict: Larger LLM, trained on large data
 - Enhance: Smaller model, task-specific training on curated data.

Size of the Support Context

Capturing the Dependence between Enhance and Predict

Generality of the Support Context

- Automatic selection of Z conditioned on the task
- Instruction-tuned LLM as both Enhance and Predict
 - Generate relevant contextual cues when prompted with instructions capturing the task (challenging to make this work across diverse tasks)
 - Use the generated contextual cues as input to generate predictions
 - Can do these iteratively to refine the predictions.

Size of the Support Context

Capturing the Dependence between Enhance and Predict

Generality of the Support Context

Human-in-the-loop

- Human-interpretable contextual cues from Enhance
 - More control over what goes in the Predict stage such as prompt proposals
- Utilize human feedback to come up with better metrics and refine predictions to better align with user's preferences.

Size of the Support Context

Capturing the Dependence between Enhance and Predict

Generality of the Support Context

Human-in-the-loop

Performance-Latency Tradeoff

Optimizing resource allocation between Enhance and Predict (especially during inference) to match specific time and computational requirements.

Going Forward

Modeling the Code Ecosystem

Derive contextual cues from the complex programming workflow

- Iterative and dynamic aspect
 - Different program stages: writing -> testing-> committing -> maintaining
 - Codebases keep evolving
- Interaction with tools
 - Compiler
 - Static Analyzer
 - GitHub
 - Web, e.g. StackOverflow
- Interaction with other developers
 - Code reviewers
 - Collaborators

Going Forward

Modeling the Code Ecosystem

Derive contextual cues from the complex programming workflow

- Iterative and dynamic aspect
 - Different program stages: writing -> testing-> committing -> maintaining
 - Codebases keep evolving
- Interaction with tools
 - Compiler
 - Static Analyzer
 - GitHub
 - Web, e.g. StackOverflow
- Interaction with other developers
 - Code reviewers
 - Collaborators

Modeling the User

Inform the selection of contextual cues and predictions based on user interactions

- Metrics based on user preferences
 - Acceptance rate
 - User edits
- Mode of user interaction [1]
 - Accelerated: fixed contextual cues, single, short predictions
 - *Exploratory:* diverse contextual cues, several, long predictions
- Changing user beliefs [2]
 - Dynamically adapt the model
 - Align more with user values: agency, creativity, trust, verifiability

Thank You

Questions/ Comments

