
Contextual Cues for Deep Learning
Models of Code

Disha Shrivastava

Outline

Article 1 Article 2 Article 3 Article 4Introduction Final Thoughts

Learning to Combine Per-Example
Solutions for Neural Program Synthesis

(NeurIPS 2021)

Repository Level Prompt Generation for
Large Language Models of Code

(ICML 2023)

On-the-Fly Adaptation of Source Code Models
(CAP Workshop, NeurIPS 2020)

RepoFusion: Training Code Models to
Understand Your Repository

(under review at NeurIPS 2023)

Outline

Article 1 Article 2 Article 3 Article 4Introduction Final Thoughts

Learning to Combine Per-Example
Solutions for Neural Program Synthesis

(NeurIPS 2021)

Repository Level Prompt Generation for
Large Language Models of Code

(ICML 2023)

On-the-Fly Adaptation of Source Code Models
(CAP Workshop, NeurIPS 2020)

RepoFusion: Training Code Models to
Understand Your Repository

(under review at NeurIPS 2023)

Deep Learning for Code
● Source Code: Exciting application domain for deep learning methods.

Code Generation

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

Deep Learning for Code
● Source Code: Exciting application domain for deep learning methods.

Code Repair
Code Generation

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

Deep Learning for Code
● Source Code: Exciting application domain for deep learning methods.

Code Translation

Code Repair
Code Generation

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

Deep Learning for Code
● Source Code: Exciting application domain for deep learning methods.

Code Translation

Code Repair
Code Generation

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

Code Analysis
“Learning to Improve Code Efficiency”. Chen, Binghong, et al. (2022)

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
https://arxiv.org/abs/2208.05297

Deep Learning for Code
● Source Code: Exciting application domain for deep learning methods.

Code Translation

Code Repair
Code Generation

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

Code Analysis
“Learning to Improve Code Efficiency”. Chen, Binghong, et al. (2022)

Code Explanation

https://denigma.app/

Code Explanation

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html
https://arxiv.org/abs/2208.05297
https://denigma.app/

Deep Learning for Code
● Source Code: Exciting application domain for deep learning methods.

● Motivation

Code Explanation
Code Explanation

 Helping Non-Programmers

Enable non-expert users to
solve problems in an
automated fashion.

● Programming requires
technical skills.

● Generate programs from
user’s intent expressed in
forms that are natural to
them such as NL.

Deep Learning for Code
● Source Code: Exciting application domain for deep learning methods.

● Motivation

Code Explanation
Code Explanation

 Helping Non-Programmers

Enable non-expert users to
solve problems in an
automated fashion.

● Programming requires
technical skills.

● Generate programs from
user’s intent expressed in
forms that are natural to
them such as NL.

 Helping Programmers

Boost productivity of software
developers.

● Divert attention from
mundane tasks.

● Focus on tasks that
require creative thinking.

● Code completion to avoid
typing boilerplate code.

Deep Learning for Code
● Source Code: Exciting application domain for deep learning methods.

● Motivation

Code Explanation
Code Explanation

 Helping Non-Programmers

Enable non-expert users to
solve problems in an
automated fashion.

● Programming requires
technical skills.

● Generate programs from
user’s intent expressed in
forms that are natural to
them such as NL.

 Helping Programmers

Boost productivity of software
developers.

● Divert attention from
mundane tasks.

● Focus on tasks that
require creative thinking.

● Code completion to avoid
typing boilerplate code.

Advancing ML Research

Several challenges with
modeling source code.

● Rigid Syntax
● Structure
● Discrete nature
● Multiple symbolic

representation forms
● Continuously evolving

Deep Learning for Code
● Source Code: Exciting application domain for deep learning methods.

● Motivation

● LLMs of code have potential for huge impact.
Code Explanation

Code Explanation

Already part of consumer-facing products

Identify and select

relevant contextual

cues from a given task.

Leverage these contextual

cues effectively in deep

learning models of code.

Central Theme
Effectively Harness Contextual Cues

Identify and select

relevant contextual

cues from a given task.

Leverage these contextual

cues effectively in deep

learning models of code.

Central Theme
Effectively Harness Contextual Cues

Improves
Generalization

● Adding information that the model wouldn’t normally have access to.
● Directing model’s attention to specific information.

More
Context-Aware

Predictions
● Adding information that the model wouldn’t normally have access to.
● Directing model’s attention to specific information.
● Adapt to unseen tasks
● Improve performance on existing tasks.

Our General Framework
X = Input Context (code in the current file before the cursor)
Y = Actual Target (tokens following the cursor till the end of the line)
W = Context Meta-information (content in other files in the repository)

Given

Goal: Effectively harness contextual cues based on X and W such that the predicted
target Ŷ is close to the actual target Y.

 Z = Enhance (X , W) Ŷ = Predict (X , Z)

Our General Framework
X = Input Context (code in the current file before the cursor)
Y = Actual Target (tokens following the cursor till the end of the line)
W = Context Meta-information (content in other files in the repository)

Given

 Context Enhancement Prediction using the Enhanced Context

Support Context
(method names and bodies
from the imported file)

Goal: Effectively harness contextual cues based on X and W such that the predicted
target Ŷ is close to the actual target Y.

 Z = Enhance (X , W) Ŷ = Predict (X , Z)

Our General Framework
X = Input Context (code in the current file before the cursor)
Y = Actual Target (tokens following the cursor till the end of the line)
W = Context Meta-information (content in other files in the repository)

Given

 Context Enhancement Prediction using the Enhanced Context

Support Context
(method names and bodies
from the imported file)

Predicted Target
(tokens generated
by the model)

Goal: Effectively harness contextual cues based on X and W such that the predicted
target Ŷ is close to the actual target Y.

 Z = Enhance (X , W) Ŷ = Predict (X , Z)

Our General Framework
X = Input Context (code in the current file before the cursor)
Y = Actual Target (tokens following the cursor till the end of the line)
W = Context Meta-information (content in other files in the repository)

Given

 Context Enhancement Prediction using the Enhanced Context

Support Context
(method names and bodies
from the imported file)

Predicted Target
(tokens generated
by the model)

Goal: Effectively harness contextual cues based on X and W such that the predicted
target Ŷ is close to the actual target Y.

Ŷ = Q (X)Without Context
Enhancement

Thesis Overview

All articles in this thesis are based on our general
Enhance-Predict framework.

● We propose novel approaches for Enhance and Predict stages.

● We focus on two main tasks.

Article 1 Article 2 Article 3 Article 4

Program Synthesis
by Examples

Code Completion in an IDE

Outline

Article 1 Article 2 Article 3 Article 4Introduction Final Thoughts

Learning to Combine Per-Example
Solutions for Neural Program Synthesis

(NeurIPS 2021)

Repository Level Prompt Generation for
Large Language Models of Code

(ICML 2023)

On-the-Fly Adaptation of Source Code Models
(CAP Workshop, NeurIPS 2020)

RepoFusion: Training Code Models to
Understand Your Repository

(under review at NeurIPS 2023)

Learning to Combine Per-Example Solutions
for Neural Program Synthesis

NeurIPS 2021

Code, data and trained checkpoints: https://github.com/shrivastavadisha/N-PEPS

https://github.com/shrivastavadisha/N-PEPS

Task: Program Synthesis by Examples

Input: [7, 6] , Output: 3

IO Example: 1

Input: [8, 12, 11] , Output: 6

IO Example: N

.

.

a <- [INT]
b <- FILTER(%2==0) a
c <- MAP(/2) b
d <- SORT c
e <- LAST d

 Program

Program
Synthesis

Block

● Given a set of N IO examples, find a program that satisfies those examples.

Task: Program Synthesis by Examples

Input: [7, 6] , Output: 3

IO Example: 1

Input: [8, 12, 11] , Output: 6

IO Example: N

.

.

a <- [INT]
b <- FILTER(%2==0) a
c <- MAP(/2) b
d <- SORT c
e <- LAST d

 Program

Program
Synthesis

Block

SORT :: [INT] -> [INT],
MAP :: (INT -> INT) -> [INT]-> [INT], ….
..

DSL = governs the syntax and semantics of the program

● Given a set of N IO examples, find a program that satisfies those examples.
● Given a timeout value to be practically meaningful.

Neural Per-Example Program Synthesis (N-PEPS)
Global Program Synthesis (GPS)

● Find global solution that satisfies
all IO examples simultaneously

● Can be hard

Neural Per-Example Program Synthesis (N-PEPS)
Global Program Synthesis (GPS)

● Find global solution p_g that
satisfies all IO examples
simultaneously

● Can be hard
● Break a hard problem into smaller, easy to solve

subproblems

● Learn to combine the solutions of the sub-problems
such that the harder problem is solved

Neural Per-Example Program Synthesis (N-PEPS)

Per Example Program Synthesis (PEPS).
Break into two stages:

● Enhance: Find programs that satisfy a
single example (PE solutions) - fast

● Predict: Combine the PE solutions
such that it leads to the global
solution

Global Program Synthesis (GPS)

● Find global solution p_g that satisfies
all IO examples simultaneously

● Can be hard

Neural Per-Example Program Synthesis (N-PEPS)

Per Example Program Synthesis (PEPS):
Break into two stages:

● Enhance: Find programs that satisfy
a single example (PE solutions) - fast

● Predict: Combine the PE solutions
such that it leads to the global
solution

● We propose an architecture called
Cross Aggregator (CA) that learns to
combine the PE solutions.

We use neural networks for both these
stages (PE Searches and CA): N-PEPS

Global Program Synthesis (GPS)

● Find global solution p_g that satisfies
all IO examples simultaneously

● Can be hard

Cross Aggregator (CA)
Idea: If a PE program state* has high relevance with the global program state at a given step,
then the following PE program line is likely to be useful for synthesizing the next line of .

*Automatic program synthesis of long programs with a learned garbage collector”. Zohar &
Wolf, NeurIPS 2018

* Program state at step t = Vector

representing the values of variables

obtained by executing t lines of the

program.

https://arxiv.org/abs/1809.04682
https://arxiv.org/abs/1809.04682

Cross Aggregator (CA)
Idea: If a PE program state* has high relevance with the global program state at a given step,
then the following PE program line is likely to be useful for synthesizing the next line of .

*Automatic program synthesis of long programs with a learned garbage collector”. Zohar &
Wolf, NeurIPS 2018

Model: Multi-head cross-attention
mechanism

Query = Global program state at step t

Key = PE program state at step t

Value = PE program line t+1

https://arxiv.org/abs/1809.04682
https://arxiv.org/abs/1809.04682

Results

Train: programs uptil length 4
Test: programs of length 4

GPS*

Use aggregation
mechanisms other
than CA

Timeout for all methods = 5s

Leading neural program synthesis technique
for the space of programs we work on

*Automatic program synthesis of long programs with a learned garbage collector”. Zohar & Wolf, NeurIPS 2018

https://arxiv.org/abs/1809.04682

Results

Train: programs uptil length 4
Test: programs of length 4

GPS

Use aggregation
mechanisms other
than CA

Timeout for all methods = 5s

Train: programs
uptil length 12

Test: programs of
lengths 5, 8, 10, 12
and 14

N-PEPS significantly improves
the success rate over GPS and
other ablation baselines.

Takeaways

Future Work ● Generalize to programs with loops and conditionals.
● Extend the idea to LLMs.

Connection
to our

Framework

● Input X = set of given IO examples, Target Y = step t of the global
solution

● Context Meta-Info W = Same as X
● Support Context Z = PE solutions (values) + step-wise PE execution

states (keys) + execution state of step t -1 of the global solution (query)
● Enhance = PE model (for PE solutions) + code interpreter (for execution

states)
● Predict = Cross Aggregator (CA)

Outline

Article 1 Article 2 Article 3 Article 4Introduction Final Thoughts

Learning to Combine Per-Example
Solutions for Neural Program Synthesis

(NeurIPS 2021)

Repository Level Prompt Generation for
Large Language Models of Code

(ICML 2023)

On-the-Fly Adaptation of Source Code Models
(CAP Workshop, NeurIPS 2020)

RepoFusion: Training Code Models to
Understand Your Repository

(under review at NeurIPS 2023)

On-the-Fly Adaptation of Source Code Models
Workshop on Computer Assisted Programming

NeurIPS 2020

Task: Code Completion in an IDE

Cursor Position

Our setting simulates editing a file in an IDE

● Objective: Complete the first token following the cursor (target hole)
● There can be code following the completion line.
● Rest of the line is blanked.

Blanked-out portion
Code

following
the line

● Models struggle when encountered with code not seen during training.

● Models need to adapt to local, unseen context

○ New Identifiers
○ Organization or project specific coding constructs

● Variable naming conventions (get_access vs getAccess)
● Data structures/ libraries used (from google3 import b)

○ Developer-specific preferences
● for (int i = 0, …) vs for (int j = 0, …)
● Comments before each line or each method

Motivation: Why Adaptation of Source Code Models?

Targeted Support Set Adaptation (TSSA)

● Enhance: Obtain support tokens, e.g. frequent in current file but rare overall.
● Predict: Adapt the model based on the support context.

○ Inner update: support window -> support token (k steps of gradient update)
○ Outer update: hole window -> hole target (using updated parameters)

Results

● Model architecture: Seq2seq encoder decoder network
with single-layer GRU.

● Base Model: no adaptation
● Dynamic Evaluation*: Support tokens consist of tokens

from context before the target hole.
● TSSA-k: TSSA with k updates with support tokens from

both before and after the target hole.
● We set k = avg. # of updates performed by dynamic

evaluation = 16 for our test data.

Test Performance on Target Hole Prediction

*Open-Vocabulary Models for Source Code Karampatsis et al. (2020)

TSSA improves upon
adaptation (dynamic

evaluation) and
non-adaptation baselines,
even with half the #steps

on some metrics.

https://arxiv.org/abs/2003.07914

Results
Test Performance on Target Hole Prediction

Test Performance across different token-types

Most of the improvement comes from
identifiers and literals.

Takeaways

Future Work

● Better ways of obtaining the support context
○ Extend the scope from current file to the entire repository.
○ Automated, Example-specific selection

● Leverage the power of pretrained LLMs
○ Expensive to perform gradient updates

Connection
to our

Framework

● Input X = hole window, Target Y = target hole (next token after the
cursor)

● Context Meta-Info W = position of the cursor + current file
● Support Context Z = support tokens + support windows from the

current file
● Enhance = targeted selection of support context, e.g. strategies based

on frequency of occurrence of tokens
● Predict = TSSA

Outline

Article 1 Article 2 Article 3 Article 4Introduction Final Thoughts

Learning to Combine Per-Example
Solutions for Neural Program Synthesis

(NeurIPS 2021)

Repository Level Prompt Generation for
Large Language Models of Code

(ICML 2023)

On-the-Fly Adaptation of Source Code Models
(CAP Workshop, NeurIPS 2020)

RepoFusion: Training Code Models to
Understand Your Repository

(under review at NeurIPS 2023)

Repository-Level Prompt Generation for Large
Language Models of Code

ICML 2023

Code, data and trained checkpoints: https://github.com/shrivastavadisha/repo_level_prompt_generation

https://github.com/shrivastavadisha/repo_level_prompt_generation

Motivation: Large Language Models (LLMs) of Code

● Used in code-assistants (e.g. GitHub Copilot, Bard).

● Struggle when encountered with code not seen during training.
○ Proprietary Software
○ WIP Code Project

● Finetuning on code from the local repository is often impractical
○ Black-box access to strong code LLMs.
○ Computationally expensive as well as challenging to update frequently.

● Building upon previous work, leverage relevant context from other files in the
repository (e.g. imports, parent classes), but only during inference.

Motivation: Large Language Models (LLMs) of Code

● Used in code-assistants (e.g. GitHub Copilot, Bard).

● Struggle when encountered with code not seen during training.
○ Proprietary Software
○ WIP Code Project

● Finetuning on code from the local repository is often impractical
○ Black-box access to strong code LLMs.
○ Computationally expensive as well as challenging to update frequently.

● Building upon previous work, leverage relevant context from other files in the
repository (e.g. imports, parent classes), but only during inference.

Select relevant repository context in a way that doesn’t
require access to the weights of the LLM.

Task: Single-line Code Completion in an IDE

Cursor Position

Our setting simulates editing a file in an IDE

● Objective: Complete the line following
the cursor (target hole)

● There can be code after the cursor line.

Task: Single-line Code Completion in an IDE

Cursor Position

Our setting simulates editing a file in an IDE

● Objective: Complete the line following
the cursor (target hole)

● There can be code after the cursor line.

Vanilla Training: given a prefix of code, predict
the next tokens.

Vanilla Inference (to match the training): take
context prior to the cursor in the current file
and predict the target hole.

Repository Context in the Prompt
Take an LLM trained in the usual way, but use it
differently during inference.

During inference, in addition to the prior context in
the current file, we add relevant context from the
repository in the prompt.

Repository Context in the Prompt
Take an LLM trained in the usual way, but use it
differently during inference.

During inference, in addition to the prior context in
the current file, we add relevant context from the
repository in the prompt.

To select relevant context, we want a method that
● Utilizes Structure of the repository
● Utilizes Context in relevant files

Solution: Use domain knowledge to guide the
selection of relevant context via a set of prompt
proposals.

Prompt Proposals
● Prompt Source: where to take the context from?
● Prompt Context Type: what to take from the prompt source?

Prompt Proposals
● Prompt Source: where to take the context from?
● Prompt Context Type: what to take from the prompt source?

In total, we
propose a list
of 63 prompt

proposals

 7 Prompt Context Types*

● Lines after the cursor
● Identifiers
● Field declarations
● Type identifiers
● String literals
● Method names
● Method names and

bodies

 10 Prompt Sources

● Current file
● Parent Class file
● Sibling file
● Similar name file
● Child Class file
● Import of the above

*Inspired by findings from On-the-Fly Adaptation of Source Code Models, Disha Shrivastava, Hugo Larochelle, Daniel Tarlow

https://openreview.net/pdf?id=FeVaSthrFst
https://openreview.net/profile?id=~Disha_Shrivastava1
https://openreview.net/profile?id=~Hugo_Larochelle1
https://openreview.net/profile?id=~Daniel_Tarlow1

Repo-Level Prompt Generator (RLPG)

Repo-Level Prompt Generator (RLPG)

Prompt Proposal Classifier

● Multi-label binary classifier that learns to select a prompt proposal that is likely to
lead to a successful prediction for the target hole.

● Success = When inclusion of the context from the prompt proposal in the prompt
leads to an accurate prediction of the hole.

● Example-Specific: different prediction conditioned on the hole.

Results

Including contexts from our prompt proposals during
inference is quite useful even though Codex has not

seen them during training.

Results

Retrieval
Baselines

Non-learned
RLPG

Learned
RLPG

Using RLPG with prompt
proposal classifier shows
significant improvements.

Takeaways

Future Work
● Automatically combine contexts from multiple prompt proposals.
● Scale the evaluation to larger data and include comparisons with more

code LLMs.

Connection
to our

Framework

● Input X = all tokens prior to the cursor in the current file, Target Y =
tokens after the cursor till end of line.

● Context Meta-Info W = position of the cursor + current file’s repository
● Support Context Z = context from a single prompt proposal predicted

by RLPG
● Enhance = Prompt Proposals + RLPG
● Predict = LLM of Code

Outline

Article 1 Article 2 Article 3 Article 4Introduction Final Thoughts

Learning to Combine Per-Example
Solutions for Neural Program Synthesis

(NeurIPS 2021)

Repository Level Prompt Generation for
Large Language Models of Code

(ICML 2023)

On-the-Fly Adaptation of Source Code Models
(CAP Workshop, NeurIPS 2020)

RepoFusion: Training Code Models to
Understand Your Repository

(under review at NeurIPS 2023)

RepoFusion: Training Code Models to
Understand Your Repository

arXiv 2023 (under review)

Code, data and trained checkpoints: https://huggingface.co/RepoFusion

https://huggingface.co/RepoFusion

Task: Single-line Code Completion in an IDE

Cursor Position

Our setting simulates editing a file in an IDE

● Objective: Complete the line following
the cursor (target hole)

● There can be code after the cursor line.

RepoFusion
Train a model to combine multiple relevant contexts coming from the repository (repo
contexts) such that it leads to an accurate prediction of the target hole.

Results

RepoFusion (220M)
outperforms ~73X larger

(CodeGen-16B) models trained
with next-token prediction.

RepoFusion (220M) is at par
with ~70X larger

StarCoder-15.5B model trained
with Fill-in-the-Middle.

N = #RCs
l = size (# tokens) of each RC

RepoFusion (220M) is at par
with ~70X larger

StarCoder-15.5B model trained
with Fill-in-the-Middle.

N = #RCs
l = size (# tokens) of each RC

RepoFusion (220M)
outperforms ~73X larger

(CodeGen-16B) models trained
with next-token prediction.

Results

Training smaller models with repository context
using RepoFusion is better or at par with training
significantly larger models without such context.

Results

Performance scales with
incorporation diverse
repo contexts from
multiple sources.

Takeaways

Future Work Leverage contextual cues from other relevant sources such as API
documentations, StackOverflow, bug reports, GitHub issues.

Connection
to our

Framework

● Input X = all tokens prior to the cursor in the current file, Target Y =
tokens after the cursor till the end of line.

● Context Meta-Info W = position of the cursor + current file’s repository
● Support Context Z = multiple repo contexts
● Enhance = module for obtaining repo contexts
● Predict = RepoFusion

We create and release Stack-Repo, a dataset of 200 Java repositories with permissive licenses
and near-deduplicated files that are augmented with three types of repository contexts.

https://huggingface.co/RepoFusion

Outline

Article 1 Article 2 Article 3 Article 4Introduction Final Thoughts

Learning to Combine Per-Example
Solutions for Neural Program Synthesis

(NeurIPS 2021)

Repository Level Prompt Generation for
Large Language Models of Code

(ICML 2023)

On-the-Fly Adaptation of Source Code Models
(CAP Workshop, NeurIPS 2020)

RepoFusion: Training Code Models to
Understand Your Repository

(under review at NeurIPS 2023)

Broad Applicability of Our Framework

Size of the Support Context

● Limited context can be given as input to Predict

● Combining multiple relevant contexts such as in RepoFusion
○ Determining the optimal number and size of each relevant context

● LLM with large context window

● Retrieval-augmented models that work with external memory

● Comes with increased inference costs

Broad Applicability of Our Framework

Size of the Support Context

Capturing the Dependence between Enhance and Predict

● Predict should learn to effectively leverage Z provided by Enhance

● Enhance should use the feedback signal from Predict to guide the
selection of Z

● Joint training of Enhance and Predict difficult in practise.

● Separate training offers more flexibility
○ Predict: Larger LLM, trained on large data
○ Enhance: Smaller model, task-specific training on curated data.

Broad Applicability of Our Framework

Size of the Support Context

Capturing the Dependence between Enhance and Predict

Generality of the Support Context

● Automatic selection of Z conditioned on the task

● Instruction-tuned LLM as both Enhance and Predict
○ Generate relevant contextual cues when prompted with instructions

capturing the task (challenging to make this work across diverse tasks)
○ Use the generated contextual cues as input to generate predictions
○ Can do these iteratively to refine the predictions.

Broad Applicability of Our Framework

Size of the Support Context

Capturing the Dependence between Enhance and Predict

Generality of the Support Context

Human-in-the-loop

● Human-interpretable contextual cues from Enhance
○ More control over what goes in the Predict stage such as prompt proposals

● Utilize human feedback to come up with better metrics and refine
predictions to better align with user’s preferences.

Broad Applicability of Our Framework

Size of the Support Context

Capturing the Dependence between Enhance and Predict

Generality of the Support Context

Human-in-the-loop

Performance-Latency Tradeoff

Optimizing resource allocation between Enhance and Predict (especially
during inference) to match specific time and computational requirements.

Going Forward

 Modeling the Code Ecosystem

Derive contextual cues from the complex
programming workflow

● Iterative and dynamic aspect
○ Different program stages: writing ->

testing-> committing -> maintaining
○ Codebases keep evolving

● Interaction with tools
○ Compiler
○ Static Analyzer
○ GitHub
○ Web, e.g. StackOverflow

● Interaction with other developers
○ Code reviewers
○ Collaborators

Going Forward
 Modeling the User

Inform the selection of contextual cues
and predictions based on user interactions

● Metrics based on user preferences
○ Acceptance rate
○ User edits

● Mode of user interaction [1]
○ Accelerated: fixed contextual cues,

single, short predictions
○ Exploratory: diverse contextual

cues, several, long predictions
● Changing user beliefs [2]

○ Dynamically adapt the model
○ Align more with user values:

agency, creativity, trust, verifiability

 Modeling the Code Ecosystem

Derive contextual cues from the complex
programming workflow

● Iterative and dynamic aspect
○ Different program stages: writing ->

testing-> committing -> maintaining
○ Codebases keep evolving

● Interaction with tools
○ Compiler
○ Static Analyzer
○ GitHub
○ Web, e.g. StackOverflow

● Interaction with other developers
○ Code reviewers
○ Collaborators

[1] “Grounded Copilot: How Programmers Interact with Code-Generating Models”. Barke et al. (2022)
[2] “Approach Intelligent Writing Assistants Usability with Seven Stages of Action”. Bhat et al. (2023)

https://arxiv.org/abs/2206.15000
https://arxiv.org/abs/2304.02822

Thank You

Questions/ Comments

