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Deep Learning for Code
● Source Code: Exciting application domain for deep learning methods.

Code Generation
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user’s intent expressed in 
forms that are natural to 
them such as NL.

 



Deep Learning for Code
● Source Code: Exciting application domain for deep learning methods.

● Motivation

Code Explanation
Code Explanation

  Helping Non-Programmers

Enable non-expert users to 
solve problems in an 
automated fashion.

● Programming requires 
technical skills.

● Generate programs from 
user’s intent expressed in 
forms that are natural to 
them such as NL.

 

      Helping Programmers

Boost productivity of software 
developers.

● Divert attention from 
mundane tasks.

● Focus on tasks that 
require creative thinking.

● Code completion to avoid 
typing boilerplate code.



Deep Learning for Code
● Source Code: Exciting application domain for deep learning methods.

● Motivation

Code Explanation
Code Explanation

  Helping Non-Programmers

Enable non-expert users to 
solve problems in an 
automated fashion.

● Programming requires 
technical skills.

● Generate programs from 
user’s intent expressed in 
forms that are natural to 
them such as NL.

 

      Helping Programmers

Boost productivity of software 
developers.

● Divert attention from 
mundane tasks.

● Focus on tasks that 
require creative thinking.

● Code completion to avoid 
typing boilerplate code.

Advancing ML Research

Several challenges with 
modeling source code.

● Rigid Syntax
● Structure
● Discrete nature
● Multiple symbolic 

representation forms
● Continuously evolving



Deep Learning for Code
● Source Code: Exciting application domain for deep learning methods.

● Motivation

● LLMs of code have potential for huge impact. 
Code Explanation

Code Explanation

Already part of consumer-facing products
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Identify and select 

relevant contextual 

cues from a given task.

Leverage these contextual 

cues effectively in deep 

learning models of code.

Central Theme
Effectively Harness Contextual Cues

Improves 
Generalization

● Adding information that the model wouldn’t normally have access to.
● Directing model’s attention to specific information.

More
Context-Aware 

Predictions
● Adding information that the model wouldn’t normally have access to.
● Directing model’s attention to specific information.
● Adapt to unseen tasks
● Improve performance on existing tasks.



Our General Framework
X  =  Input Context (code in the current file before the cursor)
Y  =  Actual Target (tokens following the cursor till the end of the line)
W =  Context Meta-information (content in other files in the repository)

Given

Goal: Effectively harness contextual cues based on X and W such that the predicted      
target Ŷ is close to the actual target Y. 
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Goal: Effectively harness contextual cues based on X and W such that the predicted      
target Ŷ is close to the actual target Y. 



  Z = Enhance ( X ,  W )  Ŷ = Predict ( X , Z )

Our General Framework
X  =  Input Context (code in the current file before the cursor)
Y  =  Actual Target (tokens following the cursor till the end of the line)
W =  Context Meta-information (content in other files in the repository)

Given

 Context Enhancement Prediction using the Enhanced Context

Support Context
(method names and bodies 
from the imported file)

Predicted Target
(tokens generated 
by the model)

Goal: Effectively harness contextual cues based on X and W such that the predicted      
target Ŷ is close to the actual target Y. 

Ŷ = Q ( X )Without Context 
Enhancement



Thesis Overview

All articles in this thesis are based on our general 
Enhance-Predict framework.

● We propose novel approaches for Enhance and Predict stages.

● We focus on two main tasks.

Article 1 Article 2 Article 3 Article 4

Program Synthesis 
by Examples

Code Completion in an IDE
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Learning to Combine Per-Example Solutions 
for Neural Program Synthesis

NeurIPS 2021

Code, data and trained checkpoints: https://github.com/shrivastavadisha/N-PEPS

https://github.com/shrivastavadisha/N-PEPS


Task: Program Synthesis by Examples

Input: [7, 6] , Output: 3

IO Example: 1

Input: [8, 12, 11] , Output: 6

IO Example: N

.

.

a <- [INT]
b <- FILTER(%2==0) a
c <- MAP(/2) b
d <- SORT c
e <- LAST d

 Program

Program 
Synthesis 

Block

● Given a set of N IO examples, find a program that satisfies those examples.



Task: Program Synthesis by Examples

Input: [7, 6] , Output: 3

IO Example: 1

Input: [8, 12, 11] , Output: 6

IO Example: N

.

.

a <- [INT]
b <- FILTER(%2==0) a
c <- MAP(/2) b
d <- SORT c
e <- LAST d

 Program

Program 
Synthesis 

Block

SORT :: [INT] -> [INT],    
MAP :: (INT -> INT) -> [INT]-> [INT], …. 
..

DSL = governs the syntax and semantics of the program 

● Given a set of N IO examples, find a program that satisfies those examples.
● Given a timeout value to be practically meaningful.
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Global Program Synthesis (GPS)

● Find global solution     that satisfies 
all IO examples simultaneously

● Can be hard



Neural Per-Example Program Synthesis (N-PEPS)
Global Program Synthesis (GPS)

● Find global solution p_g that 
satisfies all IO examples 
simultaneously

● Can be hard
● Break a hard problem into smaller, easy to solve 

subproblems

● Learn to combine the solutions of the sub-problems 
such that the harder problem is solved
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Neural Per-Example Program Synthesis (N-PEPS)

Per Example Program Synthesis (PEPS): 
Break into two stages:

● Enhance: Find programs that satisfy 
a single example (PE solutions) - fast

● Predict: Combine the PE solutions 
such that it leads to the global 
solution

● We propose an architecture called 
Cross Aggregator (CA) that learns to 
combine the PE solutions.

We use neural networks for both these 
stages (PE Searches and CA): N-PEPS

Global Program Synthesis (GPS)

● Find global solution p_g that satisfies 
all IO examples simultaneously

● Can be hard



Cross Aggregator (CA)
Idea: If a PE program state* has high relevance with the global program state at a given step, 
then the following PE program line is likely to be useful for synthesizing the next line of     .

*Automatic program synthesis of long programs with a learned garbage collector”. Zohar & 
Wolf, NeurIPS 2018

* Program state at step t = Vector 

representing the values of variables 

obtained by executing t lines of the 

program.

https://arxiv.org/abs/1809.04682
https://arxiv.org/abs/1809.04682


Cross Aggregator (CA)
Idea: If a PE program state* has high relevance with the global program state at a given step, 
then the following PE program line is likely to be useful for synthesizing the next line of     .

*Automatic program synthesis of long programs with a learned garbage collector”. Zohar & 
Wolf, NeurIPS 2018

Model: Multi-head cross-attention 
mechanism

Query = Global program state at step t

Key = PE program state at step t

Value = PE program line t+1 

https://arxiv.org/abs/1809.04682
https://arxiv.org/abs/1809.04682


Results

Train: programs uptil length 4
Test: programs of length 4

GPS* 

Use aggregation 
mechanisms other 
than CA

Timeout for all methods = 5s

Leading neural program synthesis technique 
for the space of programs we work on

*Automatic program synthesis of long programs with a learned garbage collector”. Zohar & Wolf, NeurIPS 2018

https://arxiv.org/abs/1809.04682


Results

Train: programs uptil length 4
Test: programs of length 4

GPS 

Use aggregation 
mechanisms other 
than CA

Timeout for all methods = 5s

Train: programs 
uptil length 12

Test: programs of 
lengths 5, 8, 10, 12 
and 14

N-PEPS significantly improves 
the success rate over GPS and 
other ablation baselines.



Takeaways

Future Work ● Generalize to programs with loops and conditionals.
● Extend the idea to LLMs.

Connection 
to our 

Framework

● Input X = set of given IO examples, Target Y = step t of the global 
solution 

● Context Meta-Info W = Same as X
● Support Context Z = PE solutions (values) + step-wise PE execution 

states (keys) + execution state of step t -1 of the global solution (query)
● Enhance = PE model (for PE solutions) + code interpreter (for execution 

states)
● Predict = Cross Aggregator (CA)
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On-the-Fly Adaptation of Source Code Models
Workshop on Computer Assisted Programming 

NeurIPS 2020



Task: Code Completion in an IDE

Cursor Position

Our setting simulates editing a file in an IDE

● Objective: Complete the first token following the cursor (target hole)
● There can be code following the completion line.
● Rest of the line is blanked.

Blanked-out portion
Code 

following 
the line



● Models struggle when encountered with code not seen during training.

● Models need to adapt to local, unseen context

○ New Identifiers
○ Organization or project specific coding constructs

● Variable naming conventions (get_access vs getAccess)
● Data structures/ libraries used (from google3 import b)

○ Developer-specific preferences 
● for (int i = 0, …) vs for (int j = 0, …)
● Comments before each line or each method

Motivation: Why Adaptation of Source Code Models?



Targeted Support Set Adaptation (TSSA)

● Enhance: Obtain support tokens, e.g. frequent in current file but rare overall.
● Predict: Adapt the model based on the support context.

○ Inner update: support window -> support token (k steps of gradient update)
○ Outer update: hole window -> hole target (using updated parameters)



Results

● Model architecture: Seq2seq encoder decoder network 
with single-layer GRU.

● Base Model: no adaptation
● Dynamic Evaluation*: Support tokens consist of tokens 

from context before the target hole.
● TSSA-k: TSSA with k updates with support tokens from 

both before and after the target hole.
● We set k = avg. # of updates performed by dynamic 

evaluation = 16 for our test data.

Test Performance on Target Hole Prediction

*Open-Vocabulary Models for Source Code Karampatsis et al. (2020)

TSSA improves upon 
adaptation (dynamic 

evaluation) and 
non-adaptation baselines, 
even with half the #steps 

on some metrics.

https://arxiv.org/abs/2003.07914


Results
Test Performance on Target Hole Prediction

Test Performance across different token-types 

Most of the improvement comes from 
identifiers and literals.



Takeaways

Future Work

● Better ways of obtaining the support context
○ Extend the scope from current file to the entire repository.
○ Automated, Example-specific selection

● Leverage the power of pretrained LLMs
○ Expensive to perform gradient updates

Connection 
to our 

Framework

● Input X = hole window, Target Y = target hole (next token after the 
cursor)

● Context Meta-Info W = position of the cursor + current file
● Support Context Z = support tokens + support windows from the 

current file
● Enhance = targeted selection of support context, e.g. strategies based 

on frequency of occurrence of tokens
● Predict = TSSA
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Repository-Level Prompt Generation for Large 
Language Models of Code

ICML 2023

Code, data and trained checkpoints: https://github.com/shrivastavadisha/repo_level_prompt_generation

https://github.com/shrivastavadisha/repo_level_prompt_generation


Motivation: Large Language Models (LLMs) of Code

● Used in code-assistants (e.g. GitHub Copilot, Bard). 

● Struggle when encountered with code not seen during training.
○ Proprietary Software
○ WIP Code Project

● Finetuning on code from the local repository is often impractical
○ Black-box access to strong code LLMs.
○ Computationally expensive as well as challenging to update frequently.

● Building upon previous work, leverage relevant context from other files in the 
repository (e.g. imports, parent classes), but only during inference.



Motivation: Large Language Models (LLMs) of Code

● Used in code-assistants (e.g. GitHub Copilot, Bard). 

● Struggle when encountered with code not seen during training.
○ Proprietary Software
○ WIP Code Project

● Finetuning on code from the local repository is often impractical
○ Black-box access to strong code LLMs.
○ Computationally expensive as well as challenging to update frequently.

● Building upon previous work, leverage relevant context from other files in the 
repository (e.g. imports, parent classes), but only during inference.

Select relevant repository context in a way that doesn’t 
require access to the weights of the LLM.



Task: Single-line Code Completion in an IDE

Cursor Position

Our setting simulates editing a file in an IDE

● Objective: Complete the line following 
the cursor (target hole)

● There can be code after the cursor line.



Task: Single-line Code Completion in an IDE

Cursor Position

Our setting simulates editing a file in an IDE

● Objective: Complete the line following 
the cursor (target hole)

● There can be code after the cursor line.

Vanilla Training: given a prefix of code, predict 
the next tokens.

Vanilla Inference (to match the training): take 
context prior to the cursor in the current file 
and predict the target hole.



Repository Context in the Prompt
Take an LLM trained in the usual way, but use it 
differently during inference.

During inference, in addition to the prior context in 
the current file, we add relevant context from the 
repository in the prompt.



Repository Context in the Prompt
Take an LLM trained in the usual way, but use it 
differently during inference.

During inference, in addition to the prior context in 
the current file, we add relevant context from the 
repository in the prompt.

To select relevant context, we want a method that
● Utilizes Structure of the repository
● Utilizes Context in relevant files

Solution: Use domain knowledge to guide the 
selection of relevant context via a set of prompt 
proposals.



Prompt Proposals
● Prompt Source: where to take the context from?
● Prompt Context Type: what to take from the prompt source? 



Prompt Proposals
● Prompt Source: where to take the context from?
● Prompt Context Type: what to take from the prompt source? 

In total, we 
propose a list 
of 63 prompt 

proposals

    7 Prompt Context Types*

● Lines after the cursor
● Identifiers
● Field declarations
● Type identifiers
● String literals
● Method names
● Method names and 

bodies

      10 Prompt Sources

● Current file
● Parent Class file
● Sibling file
● Similar name file
● Child Class file
● Import of the above

*Inspired by findings from On-the-Fly Adaptation of Source Code Models, Disha Shrivastava, Hugo Larochelle, Daniel Tarlow

https://openreview.net/pdf?id=FeVaSthrFst
https://openreview.net/profile?id=~Disha_Shrivastava1
https://openreview.net/profile?id=~Hugo_Larochelle1
https://openreview.net/profile?id=~Daniel_Tarlow1


Repo-Level Prompt Generator (RLPG)



Repo-Level Prompt Generator (RLPG)



Prompt Proposal Classifier

● Multi-label binary classifier that learns to select a prompt proposal that is likely to 
lead to a successful prediction for the target hole.

● Success = When inclusion of the context from the prompt proposal in the prompt 
leads to an accurate prediction of the hole.

● Example-Specific: different prediction conditioned on the hole.



Results

Including contexts from our prompt proposals during 
inference is quite useful even though Codex has not 

seen them during training.



Results

Retrieval 
Baselines

Non-learned
RLPG

Learned 
RLPG

Using RLPG with prompt 
proposal classifier shows 
significant improvements. 



Takeaways

Future Work
● Automatically combine contexts from multiple prompt proposals.
● Scale the evaluation to larger data and include comparisons with more 

code LLMs.

Connection 
to our 

Framework

● Input X = all tokens prior to the cursor in the current file, Target Y = 
tokens after the cursor till end of line.

● Context Meta-Info W = position of the cursor + current file’s repository
● Support Context Z = context from a single prompt proposal predicted 

by RLPG
● Enhance = Prompt Proposals + RLPG
● Predict = LLM of Code
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RepoFusion: Training Code Models to 
Understand Your Repository

arXiv 2023 (under review)

Code, data and trained checkpoints: https://huggingface.co/RepoFusion

https://huggingface.co/RepoFusion


Task: Single-line Code Completion in an IDE

Cursor Position

Our setting simulates editing a file in an IDE

● Objective: Complete the line following 
the cursor (target hole)

● There can be code after the cursor line.



RepoFusion
Train a model to combine multiple relevant contexts coming from the repository (repo 
contexts) such that it leads to an accurate prediction of the target hole.



Results

RepoFusion (220M) 
outperforms ~73X larger 

(CodeGen-16B) models trained 
with next-token prediction.

RepoFusion (220M) is at par 
with ~70X larger 

StarCoder-15.5B model trained 
with Fill-in-the-Middle.

N = #RCs
l = size (# tokens) of each RC



RepoFusion (220M) is at par 
with ~70X larger 

StarCoder-15.5B model trained 
with Fill-in-the-Middle.

N = #RCs
l = size (# tokens) of each RC

RepoFusion (220M) 
outperforms ~73X larger 

(CodeGen-16B) models trained 
with next-token prediction.

Results

Training smaller models with repository context 
using RepoFusion is better or at par with training 
significantly larger models without such context.



Results

Performance scales with 
incorporation diverse 
repo contexts from 
multiple sources.



Takeaways

Future Work Leverage contextual cues from other relevant sources such as API 
documentations, StackOverflow, bug reports, GitHub issues.

Connection 
to our 

Framework

● Input X = all tokens prior to the cursor in the current file, Target Y = 
tokens after the cursor till the end of line.

● Context Meta-Info W = position of the cursor + current file’s repository
● Support Context Z = multiple repo contexts
● Enhance = module for obtaining repo contexts
● Predict = RepoFusion

We create and release Stack-Repo, a dataset of 200 Java repositories with permissive licenses 
and near-deduplicated files that are augmented with three types of repository contexts.

https://huggingface.co/RepoFusion
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Broad Applicability of Our Framework

Size of the Support Context

● Limited context can be given as input to Predict

● Combining multiple relevant contexts such as in RepoFusion
○ Determining the optimal number and size of each relevant context

● LLM with large context window

● Retrieval-augmented models that work with external memory

● Comes with increased inference costs



Broad Applicability of Our Framework

Size of the Support Context

Capturing the Dependence between Enhance and Predict

● Predict should learn to effectively leverage Z provided by Enhance

● Enhance should use the feedback signal from Predict to guide the 
selection of Z

● Joint training of Enhance and Predict difficult in practise. 

● Separate training offers more flexibility
○ Predict: Larger LLM, trained on large data
○ Enhance: Smaller model, task-specific training on curated data.



Broad Applicability of Our Framework

Size of the Support Context

Capturing the Dependence between Enhance and Predict

Generality of the Support Context

● Automatic selection of Z conditioned on the task

● Instruction-tuned LLM as both Enhance and Predict
○ Generate relevant contextual cues when prompted with instructions 

capturing the task (challenging to make this work across diverse tasks)
○ Use the generated contextual cues as input to generate predictions
○ Can do these iteratively to refine the predictions.



Broad Applicability of Our Framework

Size of the Support Context

Capturing the Dependence between Enhance and Predict

Generality of the Support Context

Human-in-the-loop

● Human-interpretable contextual cues from Enhance
○ More control over what goes in the Predict stage such as prompt proposals

● Utilize human feedback to come up with better metrics and refine 
predictions to better align with user’s preferences.



Broad Applicability of Our Framework

Size of the Support Context

Capturing the Dependence between Enhance and Predict

Generality of the Support Context

Human-in-the-loop

Performance-Latency Tradeoff

Optimizing resource allocation between Enhance and Predict (especially 
during inference) to match specific time and computational requirements.



Going Forward

    Modeling the Code Ecosystem

Derive contextual cues from the complex 
programming workflow

● Iterative and dynamic aspect
○ Different program stages: writing -> 

testing-> committing -> maintaining
○ Codebases keep evolving

● Interaction with tools
○ Compiler
○ Static Analyzer
○ GitHub
○ Web, e.g. StackOverflow

● Interaction with other developers
○ Code reviewers
○ Collaborators



Going Forward
                Modeling the User

Inform the selection of contextual cues 
and predictions based on user interactions

● Metrics based on user preferences
○ Acceptance rate
○ User edits

● Mode of user interaction [1]
○ Accelerated: fixed contextual cues, 

single, short predictions
○ Exploratory: diverse contextual 

cues, several, long predictions
● Changing user beliefs [2]

○ Dynamically adapt the model
○ Align more with user values: 

agency, creativity, trust, verifiability  

    Modeling the Code Ecosystem

Derive contextual cues from the complex 
programming workflow

● Iterative and dynamic aspect
○ Different program stages: writing -> 

testing-> committing -> maintaining
○ Codebases keep evolving

● Interaction with tools
○ Compiler
○ Static Analyzer
○ GitHub
○ Web, e.g. StackOverflow

● Interaction with other developers
○ Code reviewers
○ Collaborators

[1] “Grounded Copilot: How Programmers Interact with Code-Generating Models”. Barke et al. (2022)
[2] “Approach Intelligent Writing Assistants Usability with Seven Stages of Action”. Bhat et al. (2023)

https://arxiv.org/abs/2206.15000
https://arxiv.org/abs/2304.02822


Thank You



Questions/ Comments


